Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > his7 | Structured version Visualization version GIF version |
Description: Distributive law for inner product. Lemma 3.1(S7) of [Beran] p. 95. (Contributed by NM, 31-Jul-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
his7 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 +ℎ 𝐶)) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-his2 29346 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 +ℎ 𝐶) ·ih 𝐴) = ((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) | |
2 | 1 | fveq2d 6760 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 +ℎ 𝐶) ·ih 𝐴)) = (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴)))) |
3 | hicl 29343 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ) | |
4 | hicl 29343 | . . . . . 6 ⊢ ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐶 ·ih 𝐴) ∈ ℂ) | |
5 | cjadd 14780 | . . . . . 6 ⊢ (((𝐵 ·ih 𝐴) ∈ ℂ ∧ (𝐶 ·ih 𝐴) ∈ ℂ) → (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴)))) | |
6 | 3, 4, 5 | syl2an 595 | . . . . 5 ⊢ (((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ)) → (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴)))) |
7 | 6 | 3impdir 1349 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴)))) |
8 | 2, 7 | eqtrd 2778 | . . 3 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 +ℎ 𝐶) ·ih 𝐴)) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴)))) |
9 | 8 | 3comr 1123 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘((𝐵 +ℎ 𝐶) ·ih 𝐴)) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴)))) |
10 | hvaddcl 29275 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 +ℎ 𝐶) ∈ ℋ) | |
11 | ax-his1 29345 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 +ℎ 𝐶) ∈ ℋ) → (𝐴 ·ih (𝐵 +ℎ 𝐶)) = (∗‘((𝐵 +ℎ 𝐶) ·ih 𝐴))) | |
12 | 10, 11 | sylan2 592 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝐴 ·ih (𝐵 +ℎ 𝐶)) = (∗‘((𝐵 +ℎ 𝐶) ·ih 𝐴))) |
13 | 12 | 3impb 1113 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 +ℎ 𝐶)) = (∗‘((𝐵 +ℎ 𝐶) ·ih 𝐴))) |
14 | ax-his1 29345 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) | |
15 | 14 | 3adant3 1130 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) |
16 | ax-his1 29345 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐴))) | |
17 | 16 | 3adant2 1129 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐴))) |
18 | 15, 17 | oveq12d 7273 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐶)) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴)))) |
19 | 9, 13, 18 | 3eqtr4d 2788 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 +ℎ 𝐶)) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 + caddc 10805 ∗ccj 14735 ℋchba 29182 +ℎ cva 29183 ·ih csp 29185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-hfvadd 29263 ax-hfi 29342 ax-his1 29345 ax-his2 29346 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-cj 14738 df-re 14739 df-im 14740 |
This theorem is referenced by: normlem0 29372 normlem8 29380 pjadjii 29937 lnopunilem1 30273 hmops 30283 cnlnadjlem6 30335 adjlnop 30349 adjadd 30356 hstoh 30495 |
Copyright terms: Public domain | W3C validator |