![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > his7 | Structured version Visualization version GIF version |
Description: Distributive law for inner product. Lemma 3.1(S7) of [Beran] p. 95. (Contributed by NM, 31-Jul-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
his7 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 +ℎ 𝐶)) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-his2 28496 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 +ℎ 𝐶) ·ih 𝐴) = ((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) | |
2 | 1 | fveq2d 6438 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 +ℎ 𝐶) ·ih 𝐴)) = (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴)))) |
3 | hicl 28493 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ) | |
4 | hicl 28493 | . . . . . 6 ⊢ ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐶 ·ih 𝐴) ∈ ℂ) | |
5 | cjadd 14259 | . . . . . 6 ⊢ (((𝐵 ·ih 𝐴) ∈ ℂ ∧ (𝐶 ·ih 𝐴) ∈ ℂ) → (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴)))) | |
6 | 3, 4, 5 | syl2an 591 | . . . . 5 ⊢ (((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ)) → (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴)))) |
7 | 6 | 3impdir 1466 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴)))) |
8 | 2, 7 | eqtrd 2862 | . . 3 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 +ℎ 𝐶) ·ih 𝐴)) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴)))) |
9 | 8 | 3comr 1161 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘((𝐵 +ℎ 𝐶) ·ih 𝐴)) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴)))) |
10 | hvaddcl 28425 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 +ℎ 𝐶) ∈ ℋ) | |
11 | ax-his1 28495 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 +ℎ 𝐶) ∈ ℋ) → (𝐴 ·ih (𝐵 +ℎ 𝐶)) = (∗‘((𝐵 +ℎ 𝐶) ·ih 𝐴))) | |
12 | 10, 11 | sylan2 588 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝐴 ·ih (𝐵 +ℎ 𝐶)) = (∗‘((𝐵 +ℎ 𝐶) ·ih 𝐴))) |
13 | 12 | 3impb 1149 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 +ℎ 𝐶)) = (∗‘((𝐵 +ℎ 𝐶) ·ih 𝐴))) |
14 | ax-his1 28495 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) | |
15 | 14 | 3adant3 1168 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) |
16 | ax-his1 28495 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐴))) | |
17 | 16 | 3adant2 1167 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐴))) |
18 | 15, 17 | oveq12d 6924 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐶)) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴)))) |
19 | 9, 13, 18 | 3eqtr4d 2872 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 +ℎ 𝐶)) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ‘cfv 6124 (class class class)co 6906 ℂcc 10251 + caddc 10256 ∗ccj 14214 ℋchba 28332 +ℎ cva 28333 ·ih csp 28335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-hfvadd 28413 ax-hfi 28492 ax-his1 28495 ax-his2 28496 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-po 5264 df-so 5265 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 df-2 11415 df-cj 14217 df-re 14218 df-im 14219 |
This theorem is referenced by: normlem0 28522 normlem8 28530 pjadjii 29089 lnopunilem1 29425 hmops 29435 cnlnadjlem6 29487 adjlnop 29501 adjadd 29508 hstoh 29647 |
Copyright terms: Public domain | W3C validator |