HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  his7 Structured version   Visualization version   GIF version

Theorem his7 28503
Description: Distributive law for inner product. Lemma 3.1(S7) of [Beran] p. 95. (Contributed by NM, 31-Jul-1999.) (New usage is discouraged.)
Assertion
Ref Expression
his7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 + 𝐶)) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐶)))

Proof of Theorem his7
StepHypRef Expression
1 ax-his2 28496 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 + 𝐶) ·ih 𝐴) = ((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴)))
21fveq2d 6438 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 + 𝐶) ·ih 𝐴)) = (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))))
3 hicl 28493 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ)
4 hicl 28493 . . . . . 6 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐶 ·ih 𝐴) ∈ ℂ)
5 cjadd 14259 . . . . . 6 (((𝐵 ·ih 𝐴) ∈ ℂ ∧ (𝐶 ·ih 𝐴) ∈ ℂ) → (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴))))
63, 4, 5syl2an 591 . . . . 5 (((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ)) → (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴))))
763impdir 1466 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 ·ih 𝐴) + (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴))))
82, 7eqtrd 2862 . . 3 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 + 𝐶) ·ih 𝐴)) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴))))
983comr 1161 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘((𝐵 + 𝐶) ·ih 𝐴)) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴))))
10 hvaddcl 28425 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 + 𝐶) ∈ ℋ)
11 ax-his1 28495 . . . 4 ((𝐴 ∈ ℋ ∧ (𝐵 + 𝐶) ∈ ℋ) → (𝐴 ·ih (𝐵 + 𝐶)) = (∗‘((𝐵 + 𝐶) ·ih 𝐴)))
1210, 11sylan2 588 . . 3 ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝐴 ·ih (𝐵 + 𝐶)) = (∗‘((𝐵 + 𝐶) ·ih 𝐴)))
13123impb 1149 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 + 𝐶)) = (∗‘((𝐵 + 𝐶) ·ih 𝐴)))
14 ax-his1 28495 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))
15143adant3 1168 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))
16 ax-his1 28495 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐴)))
17163adant2 1167 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐴)))
1815, 17oveq12d 6924 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐶)) = ((∗‘(𝐵 ·ih 𝐴)) + (∗‘(𝐶 ·ih 𝐴))))
199, 13, 183eqtr4d 2872 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 + 𝐶)) = ((𝐴 ·ih 𝐵) + (𝐴 ·ih 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  cfv 6124  (class class class)co 6906  cc 10251   + caddc 10256  ccj 14214  chba 28332   + cva 28333   ·ih csp 28335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-hfvadd 28413  ax-hfi 28492  ax-his1 28495  ax-his2 28496
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-po 5264  df-so 5265  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-2 11415  df-cj 14217  df-re 14218  df-im 14219
This theorem is referenced by:  normlem0  28522  normlem8  28530  pjadjii  29089  lnopunilem1  29425  hmops  29435  cnlnadjlem6  29487  adjlnop  29501  adjadd  29508  hstoh  29647
  Copyright terms: Public domain W3C validator