HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnvadj Structured version   Visualization version   GIF version

Theorem cnvadj 31840
Description: The adjoint function equals its converse. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
cnvadj adj = adj

Proof of Theorem cnvadj
Dummy variables 𝑢 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvopab 6086 . . 3 {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))} = {⟨𝑡, 𝑢⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))}
2 3ancoma 1097 . . . . 5 ((𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
3 ffvelcdm 7015 . . . . . . . . . . . . . . . . . 18 ((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑢𝑦) ∈ ℋ)
4 ax-his1 31030 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑦) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑢𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑢𝑦))))
53, 4sylan 580 . . . . . . . . . . . . . . . . 17 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑢𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑢𝑦))))
65adantrl 716 . . . . . . . . . . . . . . . 16 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝑢𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑢𝑦))))
7 ffvelcdm 7015 . . . . . . . . . . . . . . . . . 18 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑡𝑥) ∈ ℋ)
8 ax-his1 31030 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ (𝑡𝑥) ∈ ℋ) → (𝑦 ·ih (𝑡𝑥)) = (∗‘((𝑡𝑥) ·ih 𝑦)))
97, 8sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝑦 ·ih (𝑡𝑥)) = (∗‘((𝑡𝑥) ·ih 𝑦)))
109adantll 714 . . . . . . . . . . . . . . . 16 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝑦 ·ih (𝑡𝑥)) = (∗‘((𝑡𝑥) ·ih 𝑦)))
116, 10eqeq12d 2745 . . . . . . . . . . . . . . 15 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥)) ↔ (∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦))))
1211ancoms 458 . . . . . . . . . . . . . 14 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥)) ↔ (∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦))))
13 hicl 31028 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℋ ∧ (𝑢𝑦) ∈ ℋ) → (𝑥 ·ih (𝑢𝑦)) ∈ ℂ)
143, 13sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑢𝑦)) ∈ ℂ)
1514adantll 714 . . . . . . . . . . . . . . 15 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑢𝑦)) ∈ ℂ)
16 hicl 31028 . . . . . . . . . . . . . . . . 17 (((𝑡𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑡𝑥) ·ih 𝑦) ∈ ℂ)
177, 16sylan 580 . . . . . . . . . . . . . . . 16 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑡𝑥) ·ih 𝑦) ∈ ℂ)
1817adantrl 716 . . . . . . . . . . . . . . 15 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑡𝑥) ·ih 𝑦) ∈ ℂ)
19 cj11 15069 . . . . . . . . . . . . . . 15 (((𝑥 ·ih (𝑢𝑦)) ∈ ℂ ∧ ((𝑡𝑥) ·ih 𝑦) ∈ ℂ) → ((∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦)) ↔ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
2015, 18, 19syl2anc 584 . . . . . . . . . . . . . 14 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦)) ↔ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
2112, 20bitr2d 280 . . . . . . . . . . . . 13 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥))))
2221an4s 660 . . . . . . . . . . . 12 (((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥))))
2322anassrs 467 . . . . . . . . . . 11 ((((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥))))
24 eqcom 2736 . . . . . . . . . . 11 (((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥)) ↔ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))
2523, 24bitrdi 287 . . . . . . . . . 10 ((((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
2625ralbidva 3150 . . . . . . . . 9 (((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
2726ralbidva 3150 . . . . . . . 8 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
28 ralcom 3257 . . . . . . . 8 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))
2927, 28bitrdi 287 . . . . . . 7 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
3029pm5.32i 574 . . . . . 6 (((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
31 df-3an 1088 . . . . . 6 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
32 df-3an 1088 . . . . . 6 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)) ↔ ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
3330, 31, 323bitr4i 303 . . . . 5 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
342, 33bitri 275 . . . 4 ((𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
3534opabbii 5159 . . 3 {⟨𝑡, 𝑢⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))} = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))}
361, 35eqtri 2752 . 2 {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))} = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))}
37 dfadj2 31833 . . 3 adj = {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))}
3837cnveqi 5817 . 2 adj = {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))}
39 dfadj2 31833 . 2 adj = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))}
4036, 38, 393eqtr4i 2762 1 adj = adj
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {copab 5154  ccnv 5618  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  ccj 15003  chba 30867   ·ih csp 30870  adjcado 30903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-hfi 31027  ax-his1 31030
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-cj 15006  df-re 15007  df-im 15008  df-adjh 31797
This theorem is referenced by:  funcnvadj  31841  adj1o  31842  adjbdlnb  32032
  Copyright terms: Public domain W3C validator