HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnvadj Structured version   Visualization version   GIF version

Theorem cnvadj 31924
Description: The adjoint function equals its converse. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
cnvadj adj = adj

Proof of Theorem cnvadj
Dummy variables 𝑢 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvopab 6169 . . 3 {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))} = {⟨𝑡, 𝑢⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))}
2 3ancoma 1098 . . . . 5 ((𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
3 ffvelcdm 7115 . . . . . . . . . . . . . . . . . 18 ((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑢𝑦) ∈ ℋ)
4 ax-his1 31114 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑦) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑢𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑢𝑦))))
53, 4sylan 579 . . . . . . . . . . . . . . . . 17 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑢𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑢𝑦))))
65adantrl 715 . . . . . . . . . . . . . . . 16 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝑢𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑢𝑦))))
7 ffvelcdm 7115 . . . . . . . . . . . . . . . . . 18 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑡𝑥) ∈ ℋ)
8 ax-his1 31114 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ (𝑡𝑥) ∈ ℋ) → (𝑦 ·ih (𝑡𝑥)) = (∗‘((𝑡𝑥) ·ih 𝑦)))
97, 8sylan2 592 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝑦 ·ih (𝑡𝑥)) = (∗‘((𝑡𝑥) ·ih 𝑦)))
109adantll 713 . . . . . . . . . . . . . . . 16 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝑦 ·ih (𝑡𝑥)) = (∗‘((𝑡𝑥) ·ih 𝑦)))
116, 10eqeq12d 2756 . . . . . . . . . . . . . . 15 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥)) ↔ (∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦))))
1211ancoms 458 . . . . . . . . . . . . . 14 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥)) ↔ (∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦))))
13 hicl 31112 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℋ ∧ (𝑢𝑦) ∈ ℋ) → (𝑥 ·ih (𝑢𝑦)) ∈ ℂ)
143, 13sylan2 592 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑢𝑦)) ∈ ℂ)
1514adantll 713 . . . . . . . . . . . . . . 15 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑢𝑦)) ∈ ℂ)
16 hicl 31112 . . . . . . . . . . . . . . . . 17 (((𝑡𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑡𝑥) ·ih 𝑦) ∈ ℂ)
177, 16sylan 579 . . . . . . . . . . . . . . . 16 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑡𝑥) ·ih 𝑦) ∈ ℂ)
1817adantrl 715 . . . . . . . . . . . . . . 15 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑡𝑥) ·ih 𝑦) ∈ ℂ)
19 cj11 15211 . . . . . . . . . . . . . . 15 (((𝑥 ·ih (𝑢𝑦)) ∈ ℂ ∧ ((𝑡𝑥) ·ih 𝑦) ∈ ℂ) → ((∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦)) ↔ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
2015, 18, 19syl2anc 583 . . . . . . . . . . . . . 14 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦)) ↔ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
2112, 20bitr2d 280 . . . . . . . . . . . . 13 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥))))
2221an4s 659 . . . . . . . . . . . 12 (((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥))))
2322anassrs 467 . . . . . . . . . . 11 ((((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥))))
24 eqcom 2747 . . . . . . . . . . 11 (((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥)) ↔ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))
2523, 24bitrdi 287 . . . . . . . . . 10 ((((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
2625ralbidva 3182 . . . . . . . . 9 (((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
2726ralbidva 3182 . . . . . . . 8 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
28 ralcom 3295 . . . . . . . 8 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))
2927, 28bitrdi 287 . . . . . . 7 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
3029pm5.32i 574 . . . . . 6 (((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
31 df-3an 1089 . . . . . 6 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
32 df-3an 1089 . . . . . 6 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)) ↔ ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
3330, 31, 323bitr4i 303 . . . . 5 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
342, 33bitri 275 . . . 4 ((𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
3534opabbii 5233 . . 3 {⟨𝑡, 𝑢⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))} = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))}
361, 35eqtri 2768 . 2 {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))} = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))}
37 dfadj2 31917 . . 3 adj = {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))}
3837cnveqi 5899 . 2 adj = {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))}
39 dfadj2 31917 . 2 adj = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))}
4036, 38, 393eqtr4i 2778 1 adj = adj
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {copab 5228  ccnv 5699  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  ccj 15145  chba 30951   ·ih csp 30954  adjcado 30987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-hfi 31111  ax-his1 31114
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-cj 15148  df-re 15149  df-im 15150  df-adjh 31881
This theorem is referenced by:  funcnvadj  31925  adj1o  31926  adjbdlnb  32116
  Copyright terms: Public domain W3C validator