HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnvadj Structured version   Visualization version   GIF version

Theorem cnvadj 31872
Description: The adjoint function equals its converse. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
cnvadj adj = adj

Proof of Theorem cnvadj
Dummy variables 𝑢 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvopab 6083 . . 3 {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))} = {⟨𝑡, 𝑢⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))}
2 3ancoma 1097 . . . . 5 ((𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
3 ffvelcdm 7014 . . . . . . . . . . . . . . . . . 18 ((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑢𝑦) ∈ ℋ)
4 ax-his1 31062 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑦) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑢𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑢𝑦))))
53, 4sylan 580 . . . . . . . . . . . . . . . . 17 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑢𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑢𝑦))))
65adantrl 716 . . . . . . . . . . . . . . . 16 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝑢𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑢𝑦))))
7 ffvelcdm 7014 . . . . . . . . . . . . . . . . . 18 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑡𝑥) ∈ ℋ)
8 ax-his1 31062 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ (𝑡𝑥) ∈ ℋ) → (𝑦 ·ih (𝑡𝑥)) = (∗‘((𝑡𝑥) ·ih 𝑦)))
97, 8sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝑦 ·ih (𝑡𝑥)) = (∗‘((𝑡𝑥) ·ih 𝑦)))
109adantll 714 . . . . . . . . . . . . . . . 16 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝑦 ·ih (𝑡𝑥)) = (∗‘((𝑡𝑥) ·ih 𝑦)))
116, 10eqeq12d 2747 . . . . . . . . . . . . . . 15 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥)) ↔ (∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦))))
1211ancoms 458 . . . . . . . . . . . . . 14 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥)) ↔ (∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦))))
13 hicl 31060 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℋ ∧ (𝑢𝑦) ∈ ℋ) → (𝑥 ·ih (𝑢𝑦)) ∈ ℂ)
143, 13sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑢𝑦)) ∈ ℂ)
1514adantll 714 . . . . . . . . . . . . . . 15 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑢𝑦)) ∈ ℂ)
16 hicl 31060 . . . . . . . . . . . . . . . . 17 (((𝑡𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑡𝑥) ·ih 𝑦) ∈ ℂ)
177, 16sylan 580 . . . . . . . . . . . . . . . 16 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑡𝑥) ·ih 𝑦) ∈ ℂ)
1817adantrl 716 . . . . . . . . . . . . . . 15 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑡𝑥) ·ih 𝑦) ∈ ℂ)
19 cj11 15069 . . . . . . . . . . . . . . 15 (((𝑥 ·ih (𝑢𝑦)) ∈ ℂ ∧ ((𝑡𝑥) ·ih 𝑦) ∈ ℂ) → ((∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦)) ↔ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
2015, 18, 19syl2anc 584 . . . . . . . . . . . . . 14 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦)) ↔ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
2112, 20bitr2d 280 . . . . . . . . . . . . 13 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥))))
2221an4s 660 . . . . . . . . . . . 12 (((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥))))
2322anassrs 467 . . . . . . . . . . 11 ((((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥))))
24 eqcom 2738 . . . . . . . . . . 11 (((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥)) ↔ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))
2523, 24bitrdi 287 . . . . . . . . . 10 ((((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
2625ralbidva 3153 . . . . . . . . 9 (((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
2726ralbidva 3153 . . . . . . . 8 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
28 ralcom 3260 . . . . . . . 8 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))
2927, 28bitrdi 287 . . . . . . 7 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
3029pm5.32i 574 . . . . . 6 (((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
31 df-3an 1088 . . . . . 6 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
32 df-3an 1088 . . . . . 6 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)) ↔ ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
3330, 31, 323bitr4i 303 . . . . 5 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
342, 33bitri 275 . . . 4 ((𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
3534opabbii 5156 . . 3 {⟨𝑡, 𝑢⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))} = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))}
361, 35eqtri 2754 . 2 {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))} = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))}
37 dfadj2 31865 . . 3 adj = {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))}
3837cnveqi 5813 . 2 adj = {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))}
39 dfadj2 31865 . 2 adj = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))}
4036, 38, 393eqtr4i 2764 1 adj = adj
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {copab 5151  ccnv 5613  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  ccj 15003  chba 30899   ·ih csp 30902  adjcado 30935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-hfi 31059  ax-his1 31062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-cj 15006  df-re 15007  df-im 15008  df-adjh 31829
This theorem is referenced by:  funcnvadj  31873  adj1o  31874  adjbdlnb  32064
  Copyright terms: Public domain W3C validator