HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjsym Structured version   Visualization version   GIF version

Theorem adjsym 29771
Description: Symmetry property of an adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjsym ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑇,𝑦

Proof of Theorem adjsym
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ralcom 3259 . . . 4 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦))
2 fveq2 6677 . . . . . . . 8 (𝑧 = 𝑦 → (𝑆𝑧) = (𝑆𝑦))
32oveq2d 7189 . . . . . . 7 (𝑧 = 𝑦 → (𝑥 ·ih (𝑆𝑧)) = (𝑥 ·ih (𝑆𝑦)))
4 oveq2 7181 . . . . . . 7 (𝑧 = 𝑦 → ((𝑇𝑥) ·ih 𝑧) = ((𝑇𝑥) ·ih 𝑦))
53, 4eqeq12d 2755 . . . . . 6 (𝑧 = 𝑦 → ((𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦)))
65ralbidv 3110 . . . . 5 (𝑧 = 𝑦 → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦)))
76cbvralvw 3350 . . . 4 (∀𝑧 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦))
81, 7bitr4i 281 . . 3 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑧 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧))
9 oveq1 7180 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ·ih (𝑆𝑧)) = (𝑦 ·ih (𝑆𝑧)))
10 fveq2 6677 . . . . . . 7 (𝑥 = 𝑦 → (𝑇𝑥) = (𝑇𝑦))
1110oveq1d 7188 . . . . . 6 (𝑥 = 𝑦 → ((𝑇𝑥) ·ih 𝑧) = ((𝑇𝑦) ·ih 𝑧))
129, 11eqeq12d 2755 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ (𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧)))
1312cbvralvw 3350 . . . 4 (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧))
1413ralbii 3081 . . 3 (∀𝑧 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ ∀𝑧 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧))
15 fveq2 6677 . . . . . . 7 (𝑧 = 𝑥 → (𝑆𝑧) = (𝑆𝑥))
1615oveq2d 7189 . . . . . 6 (𝑧 = 𝑥 → (𝑦 ·ih (𝑆𝑧)) = (𝑦 ·ih (𝑆𝑥)))
17 oveq2 7181 . . . . . 6 (𝑧 = 𝑥 → ((𝑇𝑦) ·ih 𝑧) = ((𝑇𝑦) ·ih 𝑥))
1816, 17eqeq12d 2755 . . . . 5 (𝑧 = 𝑥 → ((𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧) ↔ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥)))
1918ralbidv 3110 . . . 4 (𝑧 = 𝑥 → (∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧) ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥)))
2019cbvralvw 3350 . . 3 (∀𝑧 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥))
218, 14, 203bitri 300 . 2 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥))
22 ffvelrn 6862 . . . . . . . . . . . 12 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
23 ax-his1 29020 . . . . . . . . . . . 12 (((𝑇𝑦) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑇𝑦))))
2422, 23sylan 583 . . . . . . . . . . 11 (((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑇𝑦))))
2524adantrl 716 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝑇𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑇𝑦))))
26 ffvelrn 6862 . . . . . . . . . . . 12 ((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑆𝑥) ∈ ℋ)
27 ax-his1 29020 . . . . . . . . . . . 12 ((𝑦 ∈ ℋ ∧ (𝑆𝑥) ∈ ℋ) → (𝑦 ·ih (𝑆𝑥)) = (∗‘((𝑆𝑥) ·ih 𝑦)))
2826, 27sylan2 596 . . . . . . . . . . 11 ((𝑦 ∈ ℋ ∧ (𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝑦 ·ih (𝑆𝑥)) = (∗‘((𝑆𝑥) ·ih 𝑦)))
2928adantll 714 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝑦 ·ih (𝑆𝑥)) = (∗‘((𝑆𝑥) ·ih 𝑦)))
3025, 29eqeq12d 2755 . . . . . . . . 9 (((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥)) ↔ (∗‘(𝑥 ·ih (𝑇𝑦))) = (∗‘((𝑆𝑥) ·ih 𝑦))))
3130ancoms 462 . . . . . . . 8 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥)) ↔ (∗‘(𝑥 ·ih (𝑇𝑦))) = (∗‘((𝑆𝑥) ·ih 𝑦))))
32 hicl 29018 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) ∈ ℂ)
3322, 32sylan2 596 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) ∈ ℂ)
3433adantll 714 . . . . . . . . 9 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) ∈ ℂ)
35 hicl 29018 . . . . . . . . . . 11 (((𝑆𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆𝑥) ·ih 𝑦) ∈ ℂ)
3626, 35sylan 583 . . . . . . . . . 10 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑆𝑥) ·ih 𝑦) ∈ ℂ)
3736adantrl 716 . . . . . . . . 9 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑥) ·ih 𝑦) ∈ ℂ)
38 cj11 14614 . . . . . . . . 9 (((𝑥 ·ih (𝑇𝑦)) ∈ ℂ ∧ ((𝑆𝑥) ·ih 𝑦) ∈ ℂ) → ((∗‘(𝑥 ·ih (𝑇𝑦))) = (∗‘((𝑆𝑥) ·ih 𝑦)) ↔ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦)))
3934, 37, 38syl2anc 587 . . . . . . . 8 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((∗‘(𝑥 ·ih (𝑇𝑦))) = (∗‘((𝑆𝑥) ·ih 𝑦)) ↔ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦)))
4031, 39bitr2d 283 . . . . . . 7 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ ((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥))))
4140an4s 660 . . . . . 6 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ ((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥))))
4241anassrs 471 . . . . 5 ((((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ ((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥))))
43 eqcom 2746 . . . . 5 (((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥)) ↔ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥))
4442, 43bitrdi 290 . . . 4 ((((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥)))
4544ralbidva 3109 . . 3 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥)))
4645ralbidva 3109 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥)))
4721, 46bitr4id 293 1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3054  wf 6336  cfv 6340  (class class class)co 7173  cc 10616  ccj 14548  chba 28857   ·ih csp 28860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-hfi 29017  ax-his1 29020
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-po 5443  df-so 5444  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-er 8323  df-en 8559  df-dom 8560  df-sdom 8561  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-2 11782  df-cj 14551  df-re 14552  df-im 14553
This theorem is referenced by:  dfadj2  29823  adjval2  29829  cnlnadjeui  30015  cnlnssadj  30018  adjbdln  30021
  Copyright terms: Public domain W3C validator