HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjsym Structured version   Visualization version   GIF version

Theorem adjsym 29083
Description: Symmetry property of an adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjsym ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑇,𝑦

Proof of Theorem adjsym
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6547 . . . . . . . . . . . 12 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
2 ax-his1 28330 . . . . . . . . . . . 12 (((𝑇𝑦) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑇𝑦))))
31, 2sylan 575 . . . . . . . . . . 11 (((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑇𝑦))))
43adantrl 707 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝑇𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑇𝑦))))
5 ffvelrn 6547 . . . . . . . . . . . 12 ((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑆𝑥) ∈ ℋ)
6 ax-his1 28330 . . . . . . . . . . . 12 ((𝑦 ∈ ℋ ∧ (𝑆𝑥) ∈ ℋ) → (𝑦 ·ih (𝑆𝑥)) = (∗‘((𝑆𝑥) ·ih 𝑦)))
75, 6sylan2 586 . . . . . . . . . . 11 ((𝑦 ∈ ℋ ∧ (𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝑦 ·ih (𝑆𝑥)) = (∗‘((𝑆𝑥) ·ih 𝑦)))
87adantll 705 . . . . . . . . . 10 (((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝑦 ·ih (𝑆𝑥)) = (∗‘((𝑆𝑥) ·ih 𝑦)))
94, 8eqeq12d 2780 . . . . . . . . 9 (((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥)) ↔ (∗‘(𝑥 ·ih (𝑇𝑦))) = (∗‘((𝑆𝑥) ·ih 𝑦))))
109ancoms 450 . . . . . . . 8 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥)) ↔ (∗‘(𝑥 ·ih (𝑇𝑦))) = (∗‘((𝑆𝑥) ·ih 𝑦))))
11 hicl 28328 . . . . . . . . . . 11 ((𝑥 ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) ∈ ℂ)
121, 11sylan2 586 . . . . . . . . . 10 ((𝑥 ∈ ℋ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) ∈ ℂ)
1312adantll 705 . . . . . . . . 9 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) ∈ ℂ)
14 hicl 28328 . . . . . . . . . . 11 (((𝑆𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆𝑥) ·ih 𝑦) ∈ ℂ)
155, 14sylan 575 . . . . . . . . . 10 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑆𝑥) ·ih 𝑦) ∈ ℂ)
1615adantrl 707 . . . . . . . . 9 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑥) ·ih 𝑦) ∈ ℂ)
17 cj11 14189 . . . . . . . . 9 (((𝑥 ·ih (𝑇𝑦)) ∈ ℂ ∧ ((𝑆𝑥) ·ih 𝑦) ∈ ℂ) → ((∗‘(𝑥 ·ih (𝑇𝑦))) = (∗‘((𝑆𝑥) ·ih 𝑦)) ↔ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦)))
1813, 16, 17syl2anc 579 . . . . . . . 8 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((∗‘(𝑥 ·ih (𝑇𝑦))) = (∗‘((𝑆𝑥) ·ih 𝑦)) ↔ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦)))
1910, 18bitr2d 271 . . . . . . 7 (((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ ((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥))))
2019an4s 650 . . . . . 6 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ ((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥))))
2120anassrs 459 . . . . 5 ((((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ ((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥))))
22 eqcom 2772 . . . . 5 (((𝑇𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑆𝑥)) ↔ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥))
2321, 22syl6bb 278 . . . 4 ((((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥)))
2423ralbidva 3132 . . 3 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥)))
2524ralbidva 3132 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥)))
26 ralcom 3245 . . . 4 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦))
27 fveq2 6375 . . . . . . . 8 (𝑧 = 𝑦 → (𝑆𝑧) = (𝑆𝑦))
2827oveq2d 6858 . . . . . . 7 (𝑧 = 𝑦 → (𝑥 ·ih (𝑆𝑧)) = (𝑥 ·ih (𝑆𝑦)))
29 oveq2 6850 . . . . . . 7 (𝑧 = 𝑦 → ((𝑇𝑥) ·ih 𝑧) = ((𝑇𝑥) ·ih 𝑦))
3028, 29eqeq12d 2780 . . . . . 6 (𝑧 = 𝑦 → ((𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦)))
3130ralbidv 3133 . . . . 5 (𝑧 = 𝑦 → (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦)))
3231cbvralv 3319 . . . 4 (∀𝑧 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦))
3326, 32bitr4i 269 . . 3 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑧 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧))
34 oveq1 6849 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ·ih (𝑆𝑧)) = (𝑦 ·ih (𝑆𝑧)))
35 fveq2 6375 . . . . . . 7 (𝑥 = 𝑦 → (𝑇𝑥) = (𝑇𝑦))
3635oveq1d 6857 . . . . . 6 (𝑥 = 𝑦 → ((𝑇𝑥) ·ih 𝑧) = ((𝑇𝑦) ·ih 𝑧))
3734, 36eqeq12d 2780 . . . . 5 (𝑥 = 𝑦 → ((𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ (𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧)))
3837cbvralv 3319 . . . 4 (∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧))
3938ralbii 3127 . . 3 (∀𝑧 ∈ ℋ ∀𝑥 ∈ ℋ (𝑥 ·ih (𝑆𝑧)) = ((𝑇𝑥) ·ih 𝑧) ↔ ∀𝑧 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧))
40 fveq2 6375 . . . . . . 7 (𝑧 = 𝑥 → (𝑆𝑧) = (𝑆𝑥))
4140oveq2d 6858 . . . . . 6 (𝑧 = 𝑥 → (𝑦 ·ih (𝑆𝑧)) = (𝑦 ·ih (𝑆𝑥)))
42 oveq2 6850 . . . . . 6 (𝑧 = 𝑥 → ((𝑇𝑦) ·ih 𝑧) = ((𝑇𝑦) ·ih 𝑥))
4341, 42eqeq12d 2780 . . . . 5 (𝑧 = 𝑥 → ((𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧) ↔ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥)))
4443ralbidv 3133 . . . 4 (𝑧 = 𝑥 → (∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧) ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥)))
4544cbvralv 3319 . . 3 (∀𝑧 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑧)) = ((𝑇𝑦) ·ih 𝑧) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥))
4633, 39, 453bitri 288 . 2 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑆𝑥)) = ((𝑇𝑦) ·ih 𝑥))
4725, 46syl6rbbr 281 1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑆𝑥) ·ih 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  wf 6064  cfv 6068  (class class class)co 6842  cc 10187  ccj 14123  chba 28167   ·ih csp 28170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-hfi 28327  ax-his1 28330
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-2 11335  df-cj 14126  df-re 14127  df-im 14128
This theorem is referenced by:  dfadj2  29135  adjval2  29141  cnlnadjeui  29327  cnlnssadj  29330  adjbdln  29333
  Copyright terms: Public domain W3C validator