![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hial2eq2 | Structured version Visualization version GIF version |
Description: Two vectors whose inner product is always equal are equal. (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hial2eq2 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝐴) = (𝑥 ·ih 𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-his1 31012 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 ·ih 𝑥) = (∗‘(𝑥 ·ih 𝐴))) | |
2 | ax-his1 31012 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝐵 ·ih 𝑥) = (∗‘(𝑥 ·ih 𝐵))) | |
3 | 1, 2 | eqeqan12d 2740 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) ↔ (∗‘(𝑥 ·ih 𝐴)) = (∗‘(𝑥 ·ih 𝐵)))) |
4 | hicl 31010 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑥 ·ih 𝐴) ∈ ℂ) | |
5 | 4 | ancoms 457 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐴) ∈ ℂ) |
6 | hicl 31010 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑥 ·ih 𝐵) ∈ ℂ) | |
7 | 6 | ancoms 457 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐵) ∈ ℂ) |
8 | cj11 15162 | . . . . . 6 ⊢ (((𝑥 ·ih 𝐴) ∈ ℂ ∧ (𝑥 ·ih 𝐵) ∈ ℂ) → ((∗‘(𝑥 ·ih 𝐴)) = (∗‘(𝑥 ·ih 𝐵)) ↔ (𝑥 ·ih 𝐴) = (𝑥 ·ih 𝐵))) | |
9 | 5, 7, 8 | syl2an 594 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ)) → ((∗‘(𝑥 ·ih 𝐴)) = (∗‘(𝑥 ·ih 𝐵)) ↔ (𝑥 ·ih 𝐴) = (𝑥 ·ih 𝐵))) |
10 | 3, 9 | bitr2d 279 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝑥 ·ih 𝐴) = (𝑥 ·ih 𝐵) ↔ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥))) |
11 | 10 | anandirs 677 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐴) = (𝑥 ·ih 𝐵) ↔ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥))) |
12 | 11 | ralbidva 3166 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝐴) = (𝑥 ·ih 𝐵) ↔ ∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥))) |
13 | hial2eq 31036 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) ↔ 𝐴 = 𝐵)) | |
14 | 12, 13 | bitrd 278 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝐴) = (𝑥 ·ih 𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ‘cfv 6546 (class class class)co 7416 ℂcc 11147 ∗ccj 15096 ℋchba 30849 ·ih csp 30852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-hfvadd 30930 ax-hvcom 30931 ax-hvass 30932 ax-hv0cl 30933 ax-hvaddid 30934 ax-hfvmul 30935 ax-hvmulid 30936 ax-hvdistr2 30939 ax-hvmul0 30940 ax-hfi 31009 ax-his1 31012 ax-his2 31013 ax-his3 31014 ax-his4 31015 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-2 12321 df-cj 15099 df-re 15100 df-im 15101 df-hvsub 30901 |
This theorem is referenced by: hoeq2 31761 adjvalval 31867 cnlnadjlem6 32002 adjlnop 32016 bra11 32038 |
Copyright terms: Public domain | W3C validator |