![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hi02 | Structured version Visualization version GIF version |
Description: Inner product with the 0 vector. (Contributed by NM, 13-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hi02 | โข (๐ด โ โ โ (๐ด ยทih 0โ) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 30294 | . . 3 โข 0โ โ โ | |
2 | ax-his1 30373 | . . 3 โข ((๐ด โ โ โง 0โ โ โ) โ (๐ด ยทih 0โ) = (โโ(0โ ยทih ๐ด))) | |
3 | 1, 2 | mpan2 689 | . 2 โข (๐ด โ โ โ (๐ด ยทih 0โ) = (โโ(0โ ยทih ๐ด))) |
4 | hi01 30387 | . . . 4 โข (๐ด โ โ โ (0โ ยทih ๐ด) = 0) | |
5 | 4 | fveq2d 6895 | . . 3 โข (๐ด โ โ โ (โโ(0โ ยทih ๐ด)) = (โโ0)) |
6 | cj0 15107 | . . 3 โข (โโ0) = 0 | |
7 | 5, 6 | eqtrdi 2788 | . 2 โข (๐ด โ โ โ (โโ(0โ ยทih ๐ด)) = 0) |
8 | 3, 7 | eqtrd 2772 | 1 โข (๐ด โ โ โ (๐ด ยทih 0โ) = 0) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1541 โ wcel 2106 โcfv 6543 (class class class)co 7411 0cc0 11112 โccj 15045 โchba 30210 ยทih csp 30213 0โc0v 30215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-hv0cl 30294 ax-hvmul0 30301 ax-hfi 30370 ax-his1 30373 ax-his3 30375 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-div 11874 df-2 12277 df-cj 15048 df-re 15049 df-im 15050 |
This theorem is referenced by: hial02 30394 choc0 30617 bra0 31241 0hmop 31274 adj0 31285 riesz3i 31353 |
Copyright terms: Public domain | W3C validator |