![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > his2sub2 | Structured version Visualization version GIF version |
Description: Distributive law for inner product of vector subtraction. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
his2sub2 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 −ℎ 𝐶)) = ((𝐴 ·ih 𝐵) − (𝐴 ·ih 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | his2sub 30974 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 −ℎ 𝐶) ·ih 𝐴) = ((𝐵 ·ih 𝐴) − (𝐶 ·ih 𝐴))) | |
2 | 1 | fveq2d 6900 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 −ℎ 𝐶) ·ih 𝐴)) = (∗‘((𝐵 ·ih 𝐴) − (𝐶 ·ih 𝐴)))) |
3 | hicl 30962 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ) | |
4 | hicl 30962 | . . . . . 6 ⊢ ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐶 ·ih 𝐴) ∈ ℂ) | |
5 | cjsub 15132 | . . . . . 6 ⊢ (((𝐵 ·ih 𝐴) ∈ ℂ ∧ (𝐶 ·ih 𝐴) ∈ ℂ) → (∗‘((𝐵 ·ih 𝐴) − (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴)))) | |
6 | 3, 4, 5 | syl2an 594 | . . . . 5 ⊢ (((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ)) → (∗‘((𝐵 ·ih 𝐴) − (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴)))) |
7 | 6 | 3impdir 1348 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 ·ih 𝐴) − (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴)))) |
8 | 2, 7 | eqtrd 2765 | . . 3 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 −ℎ 𝐶) ·ih 𝐴)) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴)))) |
9 | 8 | 3comr 1122 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘((𝐵 −ℎ 𝐶) ·ih 𝐴)) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴)))) |
10 | hvsubcl 30899 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 −ℎ 𝐶) ∈ ℋ) | |
11 | ax-his1 30964 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 −ℎ 𝐶) ∈ ℋ) → (𝐴 ·ih (𝐵 −ℎ 𝐶)) = (∗‘((𝐵 −ℎ 𝐶) ·ih 𝐴))) | |
12 | 10, 11 | sylan2 591 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝐴 ·ih (𝐵 −ℎ 𝐶)) = (∗‘((𝐵 −ℎ 𝐶) ·ih 𝐴))) |
13 | 12 | 3impb 1112 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 −ℎ 𝐶)) = (∗‘((𝐵 −ℎ 𝐶) ·ih 𝐴))) |
14 | ax-his1 30964 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) | |
15 | 14 | 3adant3 1129 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) |
16 | ax-his1 30964 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐴))) | |
17 | 16 | 3adant2 1128 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐴))) |
18 | 15, 17 | oveq12d 7437 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐵) − (𝐴 ·ih 𝐶)) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴)))) |
19 | 9, 13, 18 | 3eqtr4d 2775 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 −ℎ 𝐶)) = ((𝐴 ·ih 𝐵) − (𝐴 ·ih 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 − cmin 11476 ∗ccj 15079 ℋchba 30801 ·ih csp 30804 −ℎ cmv 30807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-hfvadd 30882 ax-hfvmul 30887 ax-hfi 30961 ax-his1 30964 ax-his2 30965 ax-his3 30966 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-2 12308 df-cj 15082 df-re 15083 df-im 15084 df-hvsub 30853 |
This theorem is referenced by: pjhthlem1 31273 riesz4i 31945 |
Copyright terms: Public domain | W3C validator |