Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > his2sub2 | Structured version Visualization version GIF version |
Description: Distributive law for inner product of vector subtraction. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
his2sub2 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 −ℎ 𝐶)) = ((𝐴 ·ih 𝐵) − (𝐴 ·ih 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | his2sub 29186 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 −ℎ 𝐶) ·ih 𝐴) = ((𝐵 ·ih 𝐴) − (𝐶 ·ih 𝐴))) | |
2 | 1 | fveq2d 6730 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 −ℎ 𝐶) ·ih 𝐴)) = (∗‘((𝐵 ·ih 𝐴) − (𝐶 ·ih 𝐴)))) |
3 | hicl 29174 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih 𝐴) ∈ ℂ) | |
4 | hicl 29174 | . . . . . 6 ⊢ ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐶 ·ih 𝐴) ∈ ℂ) | |
5 | cjsub 14725 | . . . . . 6 ⊢ (((𝐵 ·ih 𝐴) ∈ ℂ ∧ (𝐶 ·ih 𝐴) ∈ ℂ) → (∗‘((𝐵 ·ih 𝐴) − (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴)))) | |
6 | 3, 4, 5 | syl2an 599 | . . . . 5 ⊢ (((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ)) → (∗‘((𝐵 ·ih 𝐴) − (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴)))) |
7 | 6 | 3impdir 1353 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 ·ih 𝐴) − (𝐶 ·ih 𝐴))) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴)))) |
8 | 2, 7 | eqtrd 2778 | . . 3 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝐵 −ℎ 𝐶) ·ih 𝐴)) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴)))) |
9 | 8 | 3comr 1127 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (∗‘((𝐵 −ℎ 𝐶) ·ih 𝐴)) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴)))) |
10 | hvsubcl 29111 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 −ℎ 𝐶) ∈ ℋ) | |
11 | ax-his1 29176 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 −ℎ 𝐶) ∈ ℋ) → (𝐴 ·ih (𝐵 −ℎ 𝐶)) = (∗‘((𝐵 −ℎ 𝐶) ·ih 𝐴))) | |
12 | 10, 11 | sylan2 596 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝐴 ·ih (𝐵 −ℎ 𝐶)) = (∗‘((𝐵 −ℎ 𝐶) ·ih 𝐴))) |
13 | 12 | 3impb 1117 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 −ℎ 𝐶)) = (∗‘((𝐵 −ℎ 𝐶) ·ih 𝐴))) |
14 | ax-his1 29176 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) | |
15 | 14 | 3adant3 1134 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴))) |
16 | ax-his1 29176 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐴))) | |
17 | 16 | 3adant2 1133 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih 𝐶) = (∗‘(𝐶 ·ih 𝐴))) |
18 | 15, 17 | oveq12d 7240 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ih 𝐵) − (𝐴 ·ih 𝐶)) = ((∗‘(𝐵 ·ih 𝐴)) − (∗‘(𝐶 ·ih 𝐴)))) |
19 | 9, 13, 18 | 3eqtr4d 2788 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ih (𝐵 −ℎ 𝐶)) = ((𝐴 ·ih 𝐵) − (𝐴 ·ih 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ‘cfv 6389 (class class class)co 7222 ℂcc 10740 − cmin 11075 ∗ccj 14672 ℋchba 29013 ·ih csp 29016 −ℎ cmv 29019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 ax-hfvadd 29094 ax-hfvmul 29099 ax-hfi 29173 ax-his1 29176 ax-his2 29177 ax-his3 29178 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-op 4557 df-uni 4829 df-iun 4915 df-br 5063 df-opab 5125 df-mpt 5145 df-id 5464 df-po 5477 df-so 5478 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-er 8400 df-en 8636 df-dom 8637 df-sdom 8638 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-div 11503 df-2 11906 df-cj 14675 df-re 14676 df-im 14677 df-hvsub 29065 |
This theorem is referenced by: pjhthlem1 29485 riesz4i 30157 |
Copyright terms: Public domain | W3C validator |