![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hire | Structured version Visualization version GIF version |
Description: A necessary and sufficient condition for an inner product to be real. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hire | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) ∈ ℝ ↔ (𝐴 ·ih 𝐵) = (𝐵 ·ih 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hicl 30864 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) | |
2 | cjreb 15088 | . . . 4 ⊢ ((𝐴 ·ih 𝐵) ∈ ℂ → ((𝐴 ·ih 𝐵) ∈ ℝ ↔ (∗‘(𝐴 ·ih 𝐵)) = (𝐴 ·ih 𝐵))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) ∈ ℝ ↔ (∗‘(𝐴 ·ih 𝐵)) = (𝐴 ·ih 𝐵))) |
4 | eqcom 2734 | . . 3 ⊢ ((∗‘(𝐴 ·ih 𝐵)) = (𝐴 ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = (∗‘(𝐴 ·ih 𝐵))) | |
5 | 3, 4 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) ∈ ℝ ↔ (𝐴 ·ih 𝐵) = (∗‘(𝐴 ·ih 𝐵)))) |
6 | ax-his1 30866 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵))) | |
7 | 6 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐵 ·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵))) |
8 | 7 | eqeq2d 2738 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = (𝐵 ·ih 𝐴) ↔ (𝐴 ·ih 𝐵) = (∗‘(𝐴 ·ih 𝐵)))) |
9 | 5, 8 | bitr4d 282 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) ∈ ℝ ↔ (𝐴 ·ih 𝐵) = (𝐵 ·ih 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ‘cfv 6542 (class class class)co 7414 ℂcc 11122 ℝcr 11123 ∗ccj 15061 ℋchba 30703 ·ih csp 30706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-hfi 30863 ax-his1 30866 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-2 12291 df-cj 15064 df-re 15065 df-im 15066 |
This theorem is referenced by: hiidrcl 30879 pjhthlem1 31175 eigposi 31620 hmopre 31707 |
Copyright terms: Public domain | W3C validator |