HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-his2 Structured version   Visualization version   GIF version

Axiom ax-his2 31010
Description: Distributive law for inner product. Postulate (S2) of [Beran] p. 95. (Contributed by NM, 31-Jul-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-his2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶)))

Detailed syntax breakdown of Axiom ax-his2
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 30846 . . . 4 class
31, 2wcel 2108 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2108 . . 3 wff 𝐵 ∈ ℋ
6 cC . . . 4 class 𝐶
76, 2wcel 2108 . . 3 wff 𝐶 ∈ ℋ
83, 5, 7w3a 1086 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)
9 cva 30847 . . . . 5 class +
101, 4, 9co 7403 . . . 4 class (𝐴 + 𝐵)
11 csp 30849 . . . 4 class ·ih
1210, 6, 11co 7403 . . 3 class ((𝐴 + 𝐵) ·ih 𝐶)
131, 6, 11co 7403 . . . 4 class (𝐴 ·ih 𝐶)
144, 6, 11co 7403 . . . 4 class (𝐵 ·ih 𝐶)
15 caddc 11130 . . . 4 class +
1613, 14, 15co 7403 . . 3 class ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶))
1712, 16wceq 1540 . 2 wff ((𝐴 + 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶))
188, 17wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶)))
Colors of variables: wff setvar class
This axiom is referenced by:  his7  31017  hiassdi  31018  his2sub  31019  normlem0  31036  normlem8  31044  ocsh  31210  pjspansn  31504  pjadjii  31601  braadd  31872  lnopunilem1  31937  hmops  31947  cnlnadjlem2  31995  adjadd  32020  leopadd  32059
  Copyright terms: Public domain W3C validator