Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  ax-his2 Structured version   Visualization version   GIF version

Axiom ax-his2 28873
 Description: Distributive law for inner product. Postulate (S2) of [Beran] p. 95. (Contributed by NM, 31-Jul-1999.) (New usage is discouraged.)
Assertion
Ref Expression
ax-his2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶)))

Detailed syntax breakdown of Axiom ax-his2
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 chba 28709 . . . 4 class
31, 2wcel 2115 . . 3 wff 𝐴 ∈ ℋ
4 cB . . . 4 class 𝐵
54, 2wcel 2115 . . 3 wff 𝐵 ∈ ℋ
6 cC . . . 4 class 𝐶
76, 2wcel 2115 . . 3 wff 𝐶 ∈ ℋ
83, 5, 7w3a 1084 . 2 wff (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)
9 cva 28710 . . . . 5 class +
101, 4, 9co 7149 . . . 4 class (𝐴 + 𝐵)
11 csp 28712 . . . 4 class ·ih
1210, 6, 11co 7149 . . 3 class ((𝐴 + 𝐵) ·ih 𝐶)
131, 6, 11co 7149 . . . 4 class (𝐴 ·ih 𝐶)
144, 6, 11co 7149 . . . 4 class (𝐵 ·ih 𝐶)
15 caddc 10538 . . . 4 class +
1613, 14, 15co 7149 . . 3 class ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶))
1712, 16wceq 1538 . 2 wff ((𝐴 + 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶))
188, 17wi 4 1 wff ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶)))
 Colors of variables: wff setvar class This axiom is referenced by:  his7  28880  hiassdi  28881  his2sub  28882  normlem0  28899  normlem8  28907  ocsh  29073  pjspansn  29367  pjadjii  29464  braadd  29735  lnopunilem1  29800  hmops  29810  cnlnadjlem2  29858  adjadd  29883  leopadd  29922
 Copyright terms: Public domain W3C validator