![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > adj2 | Structured version Visualization version GIF version |
Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
adj2 | ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adj1 31164 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih (𝑇‘𝐴)) = (((adjℎ‘𝑇)‘𝐵) ·ih 𝐴)) | |
2 | simp2 1138 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → 𝐵 ∈ ℋ) | |
3 | dmadjop 31119 | . . . . . . 7 ⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | |
4 | 3 | ffvelcdmda 7082 | . . . . . 6 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → (𝑇‘𝐴) ∈ ℋ) |
5 | 4 | 3adant2 1132 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑇‘𝐴) ∈ ℋ) |
6 | ax-his1 30313 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ (𝑇‘𝐴) ∈ ℋ) → (𝐵 ·ih (𝑇‘𝐴)) = (∗‘((𝑇‘𝐴) ·ih 𝐵))) | |
7 | 2, 5, 6 | syl2anc 585 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih (𝑇‘𝐴)) = (∗‘((𝑇‘𝐴) ·ih 𝐵))) |
8 | adjcl 31163 | . . . . . 6 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐵) ∈ ℋ) | |
9 | 8 | 3adant3 1133 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐵) ∈ ℋ) |
10 | simp3 1139 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → 𝐴 ∈ ℋ) | |
11 | ax-his1 30313 | . . . . 5 ⊢ ((((adjℎ‘𝑇)‘𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((adjℎ‘𝑇)‘𝐵) ·ih 𝐴) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) | |
12 | 9, 10, 11 | syl2anc 585 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((adjℎ‘𝑇)‘𝐵) ·ih 𝐴) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) |
13 | 1, 7, 12 | 3eqtr3d 2781 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝑇‘𝐴) ·ih 𝐵)) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) |
14 | hicl 30311 | . . . . 5 ⊢ (((𝑇‘𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) ∈ ℂ) | |
15 | 5, 2, 14 | syl2anc 585 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) ∈ ℂ) |
16 | hicl 30311 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ ((adjℎ‘𝑇)‘𝐵) ∈ ℋ) → (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)) ∈ ℂ) | |
17 | 10, 9, 16 | syl2anc 585 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)) ∈ ℂ) |
18 | cj11 15105 | . . . 4 ⊢ ((((𝑇‘𝐴) ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)) ∈ ℂ) → ((∗‘((𝑇‘𝐴) ·ih 𝐵)) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) ↔ ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) | |
19 | 15, 17, 18 | syl2anc 585 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((∗‘((𝑇‘𝐴) ·ih 𝐵)) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) ↔ ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) |
20 | 13, 19 | mpbid 231 | . 2 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) |
21 | 20 | 3com23 1127 | 1 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 dom cdm 5675 ‘cfv 6540 (class class class)co 7404 ℂcc 11104 ∗ccj 15039 ℋchba 30150 ·ih csp 30153 adjℎcado 30186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-hilex 30230 ax-hfvadd 30231 ax-hvcom 30232 ax-hvass 30233 ax-hv0cl 30234 ax-hvaddid 30235 ax-hfvmul 30236 ax-hvmulid 30237 ax-hvdistr2 30240 ax-hvmul0 30241 ax-hfi 30310 ax-his1 30313 ax-his2 30314 ax-his3 30315 ax-his4 30316 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-2 12271 df-cj 15042 df-re 15043 df-im 15044 df-hvsub 30202 df-adjh 31080 |
This theorem is referenced by: adjadj 31167 adjvalval 31168 adjlnop 31317 adjmul 31323 adjadd 31324 adjcoi 31331 nmopcoadji 31332 |
Copyright terms: Public domain | W3C validator |