| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > adj2 | Structured version Visualization version GIF version | ||
| Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| adj2 | ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adj1 31911 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih (𝑇‘𝐴)) = (((adjℎ‘𝑇)‘𝐵) ·ih 𝐴)) | |
| 2 | simp2 1137 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → 𝐵 ∈ ℋ) | |
| 3 | dmadjop 31866 | . . . . . . 7 ⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | |
| 4 | 3 | ffvelcdmda 7017 | . . . . . 6 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → (𝑇‘𝐴) ∈ ℋ) |
| 5 | 4 | 3adant2 1131 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑇‘𝐴) ∈ ℋ) |
| 6 | ax-his1 31060 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ (𝑇‘𝐴) ∈ ℋ) → (𝐵 ·ih (𝑇‘𝐴)) = (∗‘((𝑇‘𝐴) ·ih 𝐵))) | |
| 7 | 2, 5, 6 | syl2anc 584 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih (𝑇‘𝐴)) = (∗‘((𝑇‘𝐴) ·ih 𝐵))) |
| 8 | adjcl 31910 | . . . . . 6 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐵) ∈ ℋ) | |
| 9 | 8 | 3adant3 1132 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐵) ∈ ℋ) |
| 10 | simp3 1138 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → 𝐴 ∈ ℋ) | |
| 11 | ax-his1 31060 | . . . . 5 ⊢ ((((adjℎ‘𝑇)‘𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((adjℎ‘𝑇)‘𝐵) ·ih 𝐴) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((adjℎ‘𝑇)‘𝐵) ·ih 𝐴) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) |
| 13 | 1, 7, 12 | 3eqtr3d 2774 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝑇‘𝐴) ·ih 𝐵)) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) |
| 14 | hicl 31058 | . . . . 5 ⊢ (((𝑇‘𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) ∈ ℂ) | |
| 15 | 5, 2, 14 | syl2anc 584 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) ∈ ℂ) |
| 16 | hicl 31058 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ ((adjℎ‘𝑇)‘𝐵) ∈ ℋ) → (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)) ∈ ℂ) | |
| 17 | 10, 9, 16 | syl2anc 584 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)) ∈ ℂ) |
| 18 | cj11 15069 | . . . 4 ⊢ ((((𝑇‘𝐴) ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)) ∈ ℂ) → ((∗‘((𝑇‘𝐴) ·ih 𝐵)) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) ↔ ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) | |
| 19 | 15, 17, 18 | syl2anc 584 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((∗‘((𝑇‘𝐴) ·ih 𝐵)) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) ↔ ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) |
| 20 | 13, 19 | mpbid 232 | . 2 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) |
| 21 | 20 | 3com23 1126 | 1 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ∗ccj 15003 ℋchba 30897 ·ih csp 30900 adjℎcado 30933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-hilex 30977 ax-hfvadd 30978 ax-hvcom 30979 ax-hvass 30980 ax-hv0cl 30981 ax-hvaddid 30982 ax-hfvmul 30983 ax-hvmulid 30984 ax-hvdistr2 30987 ax-hvmul0 30988 ax-hfi 31057 ax-his1 31060 ax-his2 31061 ax-his3 31062 ax-his4 31063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-cj 15006 df-re 15007 df-im 15008 df-hvsub 30949 df-adjh 31827 |
| This theorem is referenced by: adjadj 31914 adjvalval 31915 adjlnop 32064 adjmul 32070 adjadd 32071 adjcoi 32078 nmopcoadji 32079 |
| Copyright terms: Public domain | W3C validator |