Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > adj2 | Structured version Visualization version GIF version |
Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
adj2 | ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adj1 30652 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih (𝑇‘𝐴)) = (((adjℎ‘𝑇)‘𝐵) ·ih 𝐴)) | |
2 | simp2 1137 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → 𝐵 ∈ ℋ) | |
3 | dmadjop 30607 | . . . . . . 7 ⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | |
4 | 3 | ffvelcdmda 7029 | . . . . . 6 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → (𝑇‘𝐴) ∈ ℋ) |
5 | 4 | 3adant2 1131 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑇‘𝐴) ∈ ℋ) |
6 | ax-his1 29801 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ (𝑇‘𝐴) ∈ ℋ) → (𝐵 ·ih (𝑇‘𝐴)) = (∗‘((𝑇‘𝐴) ·ih 𝐵))) | |
7 | 2, 5, 6 | syl2anc 585 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih (𝑇‘𝐴)) = (∗‘((𝑇‘𝐴) ·ih 𝐵))) |
8 | adjcl 30651 | . . . . . 6 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐵) ∈ ℋ) | |
9 | 8 | 3adant3 1132 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐵) ∈ ℋ) |
10 | simp3 1138 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → 𝐴 ∈ ℋ) | |
11 | ax-his1 29801 | . . . . 5 ⊢ ((((adjℎ‘𝑇)‘𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((adjℎ‘𝑇)‘𝐵) ·ih 𝐴) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) | |
12 | 9, 10, 11 | syl2anc 585 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((adjℎ‘𝑇)‘𝐵) ·ih 𝐴) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) |
13 | 1, 7, 12 | 3eqtr3d 2785 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝑇‘𝐴) ·ih 𝐵)) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) |
14 | hicl 29799 | . . . . 5 ⊢ (((𝑇‘𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) ∈ ℂ) | |
15 | 5, 2, 14 | syl2anc 585 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) ∈ ℂ) |
16 | hicl 29799 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ ((adjℎ‘𝑇)‘𝐵) ∈ ℋ) → (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)) ∈ ℂ) | |
17 | 10, 9, 16 | syl2anc 585 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)) ∈ ℂ) |
18 | cj11 14980 | . . . 4 ⊢ ((((𝑇‘𝐴) ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)) ∈ ℂ) → ((∗‘((𝑇‘𝐴) ·ih 𝐵)) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) ↔ ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) | |
19 | 15, 17, 18 | syl2anc 585 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((∗‘((𝑇‘𝐴) ·ih 𝐵)) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) ↔ ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) |
20 | 13, 19 | mpbid 231 | . 2 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) |
21 | 20 | 3com23 1126 | 1 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 dom cdm 5630 ‘cfv 6491 (class class class)co 7349 ℂcc 10982 ∗ccj 14914 ℋchba 29638 ·ih csp 29641 adjℎcado 29674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 ax-resscn 11041 ax-1cn 11042 ax-icn 11043 ax-addcl 11044 ax-addrcl 11045 ax-mulcl 11046 ax-mulrcl 11047 ax-mulcom 11048 ax-addass 11049 ax-mulass 11050 ax-distr 11051 ax-i2m1 11052 ax-1ne0 11053 ax-1rid 11054 ax-rnegex 11055 ax-rrecex 11056 ax-cnre 11057 ax-pre-lttri 11058 ax-pre-lttrn 11059 ax-pre-ltadd 11060 ax-pre-mulgt0 11061 ax-hilex 29718 ax-hfvadd 29719 ax-hvcom 29720 ax-hvass 29721 ax-hv0cl 29722 ax-hvaddid 29723 ax-hfvmul 29724 ax-hvmulid 29725 ax-hvdistr2 29728 ax-hvmul0 29729 ax-hfi 29798 ax-his1 29801 ax-his2 29802 ax-his3 29803 ax-his4 29804 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-id 5528 df-po 5542 df-so 5543 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-riota 7305 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8581 df-map 8700 df-en 8817 df-dom 8818 df-sdom 8819 df-pnf 11124 df-mnf 11125 df-xr 11126 df-ltxr 11127 df-le 11128 df-sub 11320 df-neg 11321 df-div 11746 df-2 12149 df-cj 14917 df-re 14918 df-im 14919 df-hvsub 29690 df-adjh 30568 |
This theorem is referenced by: adjadj 30655 adjvalval 30656 adjlnop 30805 adjmul 30811 adjadd 30812 adjcoi 30819 nmopcoadji 30820 |
Copyright terms: Public domain | W3C validator |