| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > adj2 | Structured version Visualization version GIF version | ||
| Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| adj2 | ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adj1 31869 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih (𝑇‘𝐴)) = (((adjℎ‘𝑇)‘𝐵) ·ih 𝐴)) | |
| 2 | simp2 1137 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → 𝐵 ∈ ℋ) | |
| 3 | dmadjop 31824 | . . . . . . 7 ⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | |
| 4 | 3 | ffvelcdmda 7059 | . . . . . 6 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → (𝑇‘𝐴) ∈ ℋ) |
| 5 | 4 | 3adant2 1131 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑇‘𝐴) ∈ ℋ) |
| 6 | ax-his1 31018 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ (𝑇‘𝐴) ∈ ℋ) → (𝐵 ·ih (𝑇‘𝐴)) = (∗‘((𝑇‘𝐴) ·ih 𝐵))) | |
| 7 | 2, 5, 6 | syl2anc 584 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih (𝑇‘𝐴)) = (∗‘((𝑇‘𝐴) ·ih 𝐵))) |
| 8 | adjcl 31868 | . . . . . 6 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐵) ∈ ℋ) | |
| 9 | 8 | 3adant3 1132 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐵) ∈ ℋ) |
| 10 | simp3 1138 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → 𝐴 ∈ ℋ) | |
| 11 | ax-his1 31018 | . . . . 5 ⊢ ((((adjℎ‘𝑇)‘𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((adjℎ‘𝑇)‘𝐵) ·ih 𝐴) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((adjℎ‘𝑇)‘𝐵) ·ih 𝐴) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) |
| 13 | 1, 7, 12 | 3eqtr3d 2773 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝑇‘𝐴) ·ih 𝐵)) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) |
| 14 | hicl 31016 | . . . . 5 ⊢ (((𝑇‘𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) ∈ ℂ) | |
| 15 | 5, 2, 14 | syl2anc 584 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) ∈ ℂ) |
| 16 | hicl 31016 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ ((adjℎ‘𝑇)‘𝐵) ∈ ℋ) → (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)) ∈ ℂ) | |
| 17 | 10, 9, 16 | syl2anc 584 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)) ∈ ℂ) |
| 18 | cj11 15135 | . . . 4 ⊢ ((((𝑇‘𝐴) ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)) ∈ ℂ) → ((∗‘((𝑇‘𝐴) ·ih 𝐵)) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) ↔ ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) | |
| 19 | 15, 17, 18 | syl2anc 584 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((∗‘((𝑇‘𝐴) ·ih 𝐵)) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) ↔ ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) |
| 20 | 13, 19 | mpbid 232 | . 2 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) |
| 21 | 20 | 3com23 1126 | 1 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ∗ccj 15069 ℋchba 30855 ·ih csp 30858 adjℎcado 30891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-hilex 30935 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvdistr2 30945 ax-hvmul0 30946 ax-hfi 31015 ax-his1 31018 ax-his2 31019 ax-his3 31020 ax-his4 31021 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-cj 15072 df-re 15073 df-im 15074 df-hvsub 30907 df-adjh 31785 |
| This theorem is referenced by: adjadj 31872 adjvalval 31873 adjlnop 32022 adjmul 32028 adjadd 32029 adjcoi 32036 nmopcoadji 32037 |
| Copyright terms: Public domain | W3C validator |