![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > adj2 | Structured version Visualization version GIF version |
Description: Property of an adjoint Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
adj2 | ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adj1 31965 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih (𝑇‘𝐴)) = (((adjℎ‘𝑇)‘𝐵) ·ih 𝐴)) | |
2 | simp2 1137 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → 𝐵 ∈ ℋ) | |
3 | dmadjop 31920 | . . . . . . 7 ⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | |
4 | 3 | ffvelcdmda 7118 | . . . . . 6 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → (𝑇‘𝐴) ∈ ℋ) |
5 | 4 | 3adant2 1131 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑇‘𝐴) ∈ ℋ) |
6 | ax-his1 31114 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ (𝑇‘𝐴) ∈ ℋ) → (𝐵 ·ih (𝑇‘𝐴)) = (∗‘((𝑇‘𝐴) ·ih 𝐵))) | |
7 | 2, 5, 6 | syl2anc 583 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐵 ·ih (𝑇‘𝐴)) = (∗‘((𝑇‘𝐴) ·ih 𝐵))) |
8 | adjcl 31964 | . . . . . 6 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐵) ∈ ℋ) | |
9 | 8 | 3adant3 1132 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐵) ∈ ℋ) |
10 | simp3 1138 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → 𝐴 ∈ ℋ) | |
11 | ax-his1 31114 | . . . . 5 ⊢ ((((adjℎ‘𝑇)‘𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((adjℎ‘𝑇)‘𝐵) ·ih 𝐴) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) | |
12 | 9, 10, 11 | syl2anc 583 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((adjℎ‘𝑇)‘𝐵) ·ih 𝐴) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) |
13 | 1, 7, 12 | 3eqtr3d 2788 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (∗‘((𝑇‘𝐴) ·ih 𝐵)) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) |
14 | hicl 31112 | . . . . 5 ⊢ (((𝑇‘𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) ∈ ℂ) | |
15 | 5, 2, 14 | syl2anc 583 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) ∈ ℂ) |
16 | hicl 31112 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ ((adjℎ‘𝑇)‘𝐵) ∈ ℋ) → (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)) ∈ ℂ) | |
17 | 10, 9, 16 | syl2anc 583 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)) ∈ ℂ) |
18 | cj11 15211 | . . . 4 ⊢ ((((𝑇‘𝐴) ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)) ∈ ℂ) → ((∗‘((𝑇‘𝐴) ·ih 𝐵)) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) ↔ ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) | |
19 | 15, 17, 18 | syl2anc 583 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((∗‘((𝑇‘𝐴) ·ih 𝐵)) = (∗‘(𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) ↔ ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵)))) |
20 | 13, 19 | mpbid 232 | . 2 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) |
21 | 20 | 3com23 1126 | 1 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((adjℎ‘𝑇)‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ∗ccj 15145 ℋchba 30951 ·ih csp 30954 adjℎcado 30987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-hilex 31031 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvdistr2 31041 ax-hvmul0 31042 ax-hfi 31111 ax-his1 31114 ax-his2 31115 ax-his3 31116 ax-his4 31117 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-cj 15148 df-re 15149 df-im 15150 df-hvsub 31003 df-adjh 31881 |
This theorem is referenced by: adjadj 31968 adjvalval 31969 adjlnop 32118 adjmul 32124 adjadd 32125 adjcoi 32132 nmopcoadji 32133 |
Copyright terms: Public domain | W3C validator |