| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hicli | Structured version Visualization version GIF version | ||
| Description: Closure inference for inner product. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hicl.1 | ⊢ 𝐴 ∈ ℋ |
| hicl.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| hicli | ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hicl.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
| 2 | hicl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
| 3 | hicl 31099 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7431 ℂcc 11153 ℋchba 30938 ·ih csp 30941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-hfi 31098 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 |
| This theorem is referenced by: hisubcomi 31123 normlem0 31128 normlem2 31130 normlem3 31131 normlem7 31135 normlem8 31136 normlem9 31137 bcseqi 31139 norm-ii-i 31156 normpythi 31161 normpari 31173 polid2i 31176 bcsiALT 31198 h1de2i 31572 h1de2bi 31573 h1de2ctlem 31574 eigrei 31853 eigorthi 31856 lnopunilem1 32029 lnopunilem2 32030 |
| Copyright terms: Public domain | W3C validator |