| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hicli | Structured version Visualization version GIF version | ||
| Description: Closure inference for inner product. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hicl.1 | ⊢ 𝐴 ∈ ℋ |
| hicl.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| hicli | ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hicl.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
| 2 | hicl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
| 3 | hicl 31027 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 (class class class)co 7413 ℂcc 11135 ℋchba 30866 ·ih csp 30869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-hfi 31026 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 |
| This theorem is referenced by: hisubcomi 31051 normlem0 31056 normlem2 31058 normlem3 31059 normlem7 31063 normlem8 31064 normlem9 31065 bcseqi 31067 norm-ii-i 31084 normpythi 31089 normpari 31101 polid2i 31104 bcsiALT 31126 h1de2i 31500 h1de2bi 31501 h1de2ctlem 31502 eigrei 31781 eigorthi 31784 lnopunilem1 31957 lnopunilem2 31958 |
| Copyright terms: Public domain | W3C validator |