![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hicli | Structured version Visualization version GIF version |
Description: Closure inference for inner product. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hicl.1 | ⊢ 𝐴 ∈ ℋ |
hicl.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
hicli | ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hicl.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | hicl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
3 | hicl 31109 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 ℋchba 30948 ·ih csp 30951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-hfi 31108 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 |
This theorem is referenced by: hisubcomi 31133 normlem0 31138 normlem2 31140 normlem3 31141 normlem7 31145 normlem8 31146 normlem9 31147 bcseqi 31149 norm-ii-i 31166 normpythi 31171 normpari 31183 polid2i 31186 bcsiALT 31208 h1de2i 31582 h1de2bi 31583 h1de2ctlem 31584 eigrei 31863 eigorthi 31866 lnopunilem1 32039 lnopunilem2 32040 |
Copyright terms: Public domain | W3C validator |