| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hicli | Structured version Visualization version GIF version | ||
| Description: Closure inference for inner product. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hicl.1 | ⊢ 𝐴 ∈ ℋ |
| hicl.2 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| hicli | ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hicl.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
| 2 | hicl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
| 3 | hicl 31061 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 ℋchba 30900 ·ih csp 30903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-hfi 31060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: hisubcomi 31085 normlem0 31090 normlem2 31092 normlem3 31093 normlem7 31097 normlem8 31098 normlem9 31099 bcseqi 31101 norm-ii-i 31118 normpythi 31123 normpari 31135 polid2i 31138 bcsiALT 31160 h1de2i 31534 h1de2bi 31535 h1de2ctlem 31536 eigrei 31815 eigorthi 31818 lnopunilem1 31991 lnopunilem2 31992 |
| Copyright terms: Public domain | W3C validator |