HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hicli Structured version   Visualization version   GIF version

Theorem hicli 31010
Description: Closure inference for inner product. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hicl.1 𝐴 ∈ ℋ
hicl.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hicli (𝐴 ·ih 𝐵) ∈ ℂ

Proof of Theorem hicli
StepHypRef Expression
1 hicl.1 . 2 𝐴 ∈ ℋ
2 hicl.2 . 2 𝐵 ∈ ℋ
3 hicl 31009 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ)
41, 2, 3mp2an 692 1 (𝐴 ·ih 𝐵) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  (class class class)co 7387  cc 11066  chba 30848   ·ih csp 30851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-hfi 31008
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390
This theorem is referenced by:  hisubcomi  31033  normlem0  31038  normlem2  31040  normlem3  31041  normlem7  31045  normlem8  31046  normlem9  31047  bcseqi  31049  norm-ii-i  31066  normpythi  31071  normpari  31083  polid2i  31086  bcsiALT  31108  h1de2i  31482  h1de2bi  31483  h1de2ctlem  31484  eigrei  31763  eigorthi  31766  lnopunilem1  31939  lnopunilem2  31940
  Copyright terms: Public domain W3C validator