HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hicli Structured version   Visualization version   GIF version

Theorem hicli 31110
Description: Closure inference for inner product. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
hicl.1 𝐴 ∈ ℋ
hicl.2 𝐵 ∈ ℋ
Assertion
Ref Expression
hicli (𝐴 ·ih 𝐵) ∈ ℂ

Proof of Theorem hicli
StepHypRef Expression
1 hicl.1 . 2 𝐴 ∈ ℋ
2 hicl.2 . 2 𝐵 ∈ ℋ
3 hicl 31109 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ)
41, 2, 3mp2an 692 1 (𝐴 ·ih 𝐵) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  (class class class)co 7431  cc 11151  chba 30948   ·ih csp 30951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-hfi 31108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434
This theorem is referenced by:  hisubcomi  31133  normlem0  31138  normlem2  31140  normlem3  31141  normlem7  31145  normlem8  31146  normlem9  31147  bcseqi  31149  norm-ii-i  31166  normpythi  31171  normpari  31183  polid2i  31186  bcsiALT  31208  h1de2i  31582  h1de2bi  31583  h1de2ctlem  31584  eigrei  31863  eigorthi  31866  lnopunilem1  32039  lnopunilem2  32040
  Copyright terms: Public domain W3C validator