HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadddi Structured version   Visualization version   GIF version

Theorem hoadddi 29234
Description: Scalar product distributive law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoadddi ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)))

Proof of Theorem hoadddi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1199 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℂ)
2 ffvelrn 6621 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
323ad2antl2 1194 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
4 ffvelrn 6621 . . . . . . 7 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
543ad2antl3 1195 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
6 ax-hvdistr1 28437 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ ∧ (𝑈𝑥) ∈ ℋ) → (𝐴 · ((𝑇𝑥) + (𝑈𝑥))) = ((𝐴 · (𝑇𝑥)) + (𝐴 · (𝑈𝑥))))
71, 3, 5, 6syl3anc 1439 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇𝑥) + (𝑈𝑥))) = ((𝐴 · (𝑇𝑥)) + (𝐴 · (𝑈𝑥))))
8 hosval 29171 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑥) = ((𝑇𝑥) + (𝑈𝑥)))
98oveq2d 6938 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (𝐴 · ((𝑇𝑥) + (𝑈𝑥))))
1093expa 1108 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (𝐴 · ((𝑇𝑥) + (𝑈𝑥))))
11103adantl1 1168 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (𝐴 · ((𝑇𝑥) + (𝑈𝑥))))
12 homval 29172 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
13123expa 1108 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
14133adantl3 1170 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
15 homval 29172 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
16153expa 1108 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
17163adantl2 1169 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
1814, 17oveq12d 6940 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐴 · (𝑈𝑥))))
197, 11, 183eqtr4d 2824 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
20 hoaddcl 29189 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 +op 𝑈): ℋ⟶ ℋ)
2120anim2i 610 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ))
22213impb 1104 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ))
23 homval 29172 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (𝐴 · ((𝑇 +op 𝑈)‘𝑥)))
24233expa 1108 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (𝐴 · ((𝑇 +op 𝑈)‘𝑥)))
2522, 24sylan 575 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (𝐴 · ((𝑇 +op 𝑈)‘𝑥)))
26 homulcl 29190 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
27 homulcl 29190 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op 𝑈): ℋ⟶ ℋ)
2826, 27anim12i 606 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ))
29283impdi 1412 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ))
30 hosval 29171 . . . . . 6 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
31303expa 1108 . . . . 5 ((((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
3229, 31sylan 575 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
3319, 25, 323eqtr4d 2824 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥))
3433ralrimiva 3148 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥))
35 homulcl 29190 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ)
3620, 35sylan2 586 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ)
37363impb 1104 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ)
38 hoaddcl 29189 . . . . 5 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
3926, 27, 38syl2an 589 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
40393impdi 1412 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
41 hoeq 29191 . . 3 (((𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ ∧ ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) ↔ (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))))
4237, 40, 41syl2anc 579 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) ↔ (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))))
4334, 42mpbid 224 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  chba 28348   + cva 28349   · csm 28350   +op chos 28367   ·op chot 28368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-hilex 28428  ax-hfvadd 28429  ax-hfvmul 28434  ax-hvdistr1 28437
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-map 8142  df-hosum 29161  df-homul 29162
This theorem is referenced by:  hosubdi  29239  honegdi  29240  ho2times  29250  opsqrlem6  29576
  Copyright terms: Public domain W3C validator