HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadddi Structured version   Visualization version   GIF version

Theorem hoadddi 31832
Description: Scalar product distributive law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoadddi ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)))

Proof of Theorem hoadddi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℂ)
2 ffvelcdm 7101 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
323ad2antl2 1185 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
4 ffvelcdm 7101 . . . . . . 7 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
543ad2antl3 1186 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
6 ax-hvdistr1 31037 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ ∧ (𝑈𝑥) ∈ ℋ) → (𝐴 · ((𝑇𝑥) + (𝑈𝑥))) = ((𝐴 · (𝑇𝑥)) + (𝐴 · (𝑈𝑥))))
71, 3, 5, 6syl3anc 1370 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇𝑥) + (𝑈𝑥))) = ((𝐴 · (𝑇𝑥)) + (𝐴 · (𝑈𝑥))))
8 hosval 31769 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑥) = ((𝑇𝑥) + (𝑈𝑥)))
98oveq2d 7447 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (𝐴 · ((𝑇𝑥) + (𝑈𝑥))))
1093expa 1117 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (𝐴 · ((𝑇𝑥) + (𝑈𝑥))))
11103adantl1 1165 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (𝐴 · ((𝑇𝑥) + (𝑈𝑥))))
12 homval 31770 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
13123expa 1117 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
14133adantl3 1167 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
15 homval 31770 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
16153expa 1117 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
17163adantl2 1166 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
1814, 17oveq12d 7449 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐴 · (𝑈𝑥))))
197, 11, 183eqtr4d 2785 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
20 hoaddcl 31787 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 +op 𝑈): ℋ⟶ ℋ)
2120anim2i 617 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ))
22213impb 1114 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ))
23 homval 31770 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (𝐴 · ((𝑇 +op 𝑈)‘𝑥)))
24233expa 1117 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (𝐴 · ((𝑇 +op 𝑈)‘𝑥)))
2522, 24sylan 580 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (𝐴 · ((𝑇 +op 𝑈)‘𝑥)))
26 homulcl 31788 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
27 homulcl 31788 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op 𝑈): ℋ⟶ ℋ)
2826, 27anim12i 613 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ))
29283impdi 1349 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ))
30 hosval 31769 . . . . . 6 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
31303expa 1117 . . . . 5 ((((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
3229, 31sylan 580 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
3319, 25, 323eqtr4d 2785 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥))
3433ralrimiva 3144 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥))
35 homulcl 31788 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ)
3620, 35sylan2 593 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ)
37363impb 1114 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ)
38 hoaddcl 31787 . . . . 5 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
3926, 27, 38syl2an 596 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
40393impdi 1349 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
41 hoeq 31789 . . 3 (((𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ ∧ ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) ↔ (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))))
4237, 40, 41syl2anc 584 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) ↔ (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))))
4334, 42mpbid 232 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  chba 30948   + cva 30949   · csm 30950   +op chos 30967   ·op chot 30968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-hilex 31028  ax-hfvadd 31029  ax-hfvmul 31034  ax-hvdistr1 31037
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-hosum 31759  df-homul 31760
This theorem is referenced by:  hosubdi  31837  honegdi  31838  ho2times  31848  opsqrlem6  32174
  Copyright terms: Public domain W3C validator