HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadddi Structured version   Visualization version   GIF version

Theorem hoadddi 29002
Description: Scalar product distributive law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoadddi ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)))

Proof of Theorem hoadddi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1227 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℂ)
2 ffvelrn 6500 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
323ad2antl2 1201 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
4 ffvelrn 6500 . . . . . . 7 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
543ad2antl3 1202 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
6 ax-hvdistr1 28205 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ ∧ (𝑈𝑥) ∈ ℋ) → (𝐴 · ((𝑇𝑥) + (𝑈𝑥))) = ((𝐴 · (𝑇𝑥)) + (𝐴 · (𝑈𝑥))))
71, 3, 5, 6syl3anc 1476 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇𝑥) + (𝑈𝑥))) = ((𝐴 · (𝑇𝑥)) + (𝐴 · (𝑈𝑥))))
8 hosval 28939 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑥) = ((𝑇𝑥) + (𝑈𝑥)))
98oveq2d 6809 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (𝐴 · ((𝑇𝑥) + (𝑈𝑥))))
1093expa 1111 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (𝐴 · ((𝑇𝑥) + (𝑈𝑥))))
11103adantl1 1171 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (𝐴 · ((𝑇𝑥) + (𝑈𝑥))))
12 homval 28940 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
13123expa 1111 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
14133adantl3 1173 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
15 homval 28940 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
16153expa 1111 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
17163adantl2 1172 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
1814, 17oveq12d 6811 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐴 · (𝑈𝑥))))
197, 11, 183eqtr4d 2815 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
20 hoaddcl 28957 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 +op 𝑈): ℋ⟶ ℋ)
2120anim2i 603 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ))
22213impb 1107 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ))
23 homval 28940 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (𝐴 · ((𝑇 +op 𝑈)‘𝑥)))
24233expa 1111 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (𝐴 · ((𝑇 +op 𝑈)‘𝑥)))
2522, 24sylan 569 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (𝐴 · ((𝑇 +op 𝑈)‘𝑥)))
26 homulcl 28958 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
27 homulcl 28958 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op 𝑈): ℋ⟶ ℋ)
2826, 27anim12i 600 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ))
29283impdi 1443 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ))
30 hosval 28939 . . . . . 6 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
31303expa 1111 . . . . 5 ((((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
3229, 31sylan 569 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
3319, 25, 323eqtr4d 2815 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥))
3433ralrimiva 3115 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥))
35 homulcl 28958 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ)
3620, 35sylan2 580 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ)
37363impb 1107 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ)
38 hoaddcl 28957 . . . . 5 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
3926, 27, 38syl2an 583 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
40393impdi 1443 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
41 hoeq 28959 . . 3 (((𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ ∧ ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) ↔ (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))))
4237, 40, 41syl2anc 573 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) ↔ (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))))
4334, 42mpbid 222 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wf 6027  cfv 6031  (class class class)co 6793  cc 10136  chil 28116   + cva 28117   · csm 28118   +op chos 28135   ·op chot 28136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-hilex 28196  ax-hfvadd 28197  ax-hfvmul 28202  ax-hvdistr1 28205
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-map 8011  df-hosum 28929  df-homul 28930
This theorem is referenced by:  hosubdi  29007  honegdi  29008  ho2times  29018  opsqrlem6  29344
  Copyright terms: Public domain W3C validator