HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadddi Structured version   Visualization version   GIF version

Theorem hoadddi 29741
Description: Scalar product distributive law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hoadddi ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)))

Proof of Theorem hoadddi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℂ)
2 ffvelrn 6862 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
323ad2antl2 1187 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
4 ffvelrn 6862 . . . . . . 7 ((𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
543ad2antl3 1188 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑈𝑥) ∈ ℋ)
6 ax-hvdistr1 28946 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ ∧ (𝑈𝑥) ∈ ℋ) → (𝐴 · ((𝑇𝑥) + (𝑈𝑥))) = ((𝐴 · (𝑇𝑥)) + (𝐴 · (𝑈𝑥))))
71, 3, 5, 6syl3anc 1372 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇𝑥) + (𝑈𝑥))) = ((𝐴 · (𝑇𝑥)) + (𝐴 · (𝑈𝑥))))
8 hosval 29678 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇 +op 𝑈)‘𝑥) = ((𝑇𝑥) + (𝑈𝑥)))
98oveq2d 7189 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (𝐴 · ((𝑇𝑥) + (𝑈𝑥))))
1093expa 1119 . . . . . 6 (((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (𝐴 · ((𝑇𝑥) + (𝑈𝑥))))
11103adantl1 1167 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (𝐴 · ((𝑇𝑥) + (𝑈𝑥))))
12 homval 29679 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
13123expa 1119 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
14133adantl3 1169 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑥) = (𝐴 · (𝑇𝑥)))
15 homval 29679 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
16153expa 1119 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
17163adantl2 1168 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op 𝑈)‘𝑥) = (𝐴 · (𝑈𝑥)))
1814, 17oveq12d 7191 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)) = ((𝐴 · (𝑇𝑥)) + (𝐴 · (𝑈𝑥))))
197, 11, 183eqtr4d 2784 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝑇 +op 𝑈)‘𝑥)) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
20 hoaddcl 29696 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇 +op 𝑈): ℋ⟶ ℋ)
2120anim2i 620 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ))
22213impb 1116 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ))
23 homval 29679 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (𝐴 · ((𝑇 +op 𝑈)‘𝑥)))
24233expa 1119 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (𝐴 · ((𝑇 +op 𝑈)‘𝑥)))
2522, 24sylan 583 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (𝐴 · ((𝑇 +op 𝑈)‘𝑥)))
26 homulcl 29697 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
27 homulcl 29697 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op 𝑈): ℋ⟶ ℋ)
2826, 27anim12i 616 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ))
29283impdi 1351 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ))
30 hosval 29678 . . . . . 6 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
31303expa 1119 . . . . 5 ((((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
3229, 31sylan 583 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇)‘𝑥) + ((𝐴 ·op 𝑈)‘𝑥)))
3319, 25, 323eqtr4d 2784 . . 3 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥))
3433ralrimiva 3097 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥))
35 homulcl 29697 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑇 +op 𝑈): ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ)
3620, 35sylan2 596 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ)) → (𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ)
37363impb 1116 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ)
38 hoaddcl 29696 . . . . 5 (((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op 𝑈): ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
3926, 27, 38syl2an 599 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ (𝐴 ∈ ℂ ∧ 𝑈: ℋ⟶ ℋ)) → ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
40393impdi 1351 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ)
41 hoeq 29698 . . 3 (((𝐴 ·op (𝑇 +op 𝑈)): ℋ⟶ ℋ ∧ ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) ↔ (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))))
4237, 40, 41syl2anc 587 . 2 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ((𝐴 ·op (𝑇 +op 𝑈))‘𝑥) = (((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))‘𝑥) ↔ (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈))))
4334, 42mpbid 235 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝐴 ·op (𝑇 +op 𝑈)) = ((𝐴 ·op 𝑇) +op (𝐴 ·op 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3054  wf 6336  cfv 6340  (class class class)co 7173  cc 10616  chba 28857   + cva 28858   · csm 28859   +op chos 28876   ·op chot 28877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-hilex 28937  ax-hfvadd 28938  ax-hfvmul 28943  ax-hvdistr1 28946
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7176  df-oprab 7177  df-mpo 7178  df-map 8442  df-hosum 29668  df-homul 29669
This theorem is referenced by:  hosubdi  29746  honegdi  29747  ho2times  29757  opsqrlem6  30083
  Copyright terms: Public domain W3C validator