HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopmi Structured version   Visualization version   GIF version

Theorem lnopmi 30263
Description: The scalar product of a linear operator is a linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopm.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopmi (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ LinOp)

Proof of Theorem lnopmi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopm.1 . . . 4 𝑇 ∈ LinOp
21lnopfi 30232 . . 3 𝑇: ℋ⟶ ℋ
3 homulcl 30022 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
42, 3mpan2 687 . 2 (𝐴 ∈ ℂ → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
5 hvmulcl 29276 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
6 hvaddcl 29275 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
75, 6sylan 579 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
8 homval 30004 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))))
92, 8mp3an2 1447 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))))
107, 9sylan2 592 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))))
11 id 22 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
122ffvelrni 6942 . . . . . . . . . 10 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
13 hvmulcl 29276 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
1412, 13sylan2 592 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
152ffvelrni 6942 . . . . . . . . 9 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
16 ax-hvdistr1 29271 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 · (𝑇𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ) → (𝐴 · ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) = ((𝐴 · (𝑥 · (𝑇𝑦))) + (𝐴 · (𝑇𝑧))))
1711, 14, 15, 16syl3an 1158 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐴 · ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) = ((𝐴 · (𝑥 · (𝑇𝑦))) + (𝐴 · (𝑇𝑧))))
18173expb 1118 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝐴 · ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) = ((𝐴 · (𝑥 · (𝑇𝑦))) + (𝐴 · (𝑇𝑧))))
191lnopli 30231 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
20193expa 1116 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
2120oveq2d 7271 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (𝐴 · ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
2221adantl 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (𝐴 · ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
23 homval 30004 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
242, 23mp3an2 1447 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
2524adantrl 712 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
2625oveq2d 7271 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) = (𝑥 · (𝐴 · (𝑇𝑦))))
27 hvmulcom 29306 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) → (𝐴 · (𝑥 · (𝑇𝑦))) = (𝑥 · (𝐴 · (𝑇𝑦))))
2812, 27syl3an3 1163 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝐴 · (𝑥 · (𝑇𝑦))) = (𝑥 · (𝐴 · (𝑇𝑦))))
29283expb 1118 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝐴 · (𝑥 · (𝑇𝑦))) = (𝑥 · (𝐴 · (𝑇𝑦))))
3026, 29eqtr4d 2781 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) = (𝐴 · (𝑥 · (𝑇𝑦))))
31 homval 30004 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑧 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑧) = (𝐴 · (𝑇𝑧)))
322, 31mp3an2 1447 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑧) = (𝐴 · (𝑇𝑧)))
3330, 32oveqan12d 7274 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ (𝐴 ∈ ℂ ∧ 𝑧 ∈ ℋ)) → ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)) = ((𝐴 · (𝑥 · (𝑇𝑦))) + (𝐴 · (𝑇𝑧))))
3433anandis 674 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)) = ((𝐴 · (𝑥 · (𝑇𝑦))) + (𝐴 · (𝑇𝑧))))
3518, 22, 343eqtr4rd 2789 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)) = (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))))
3610, 35eqtr4d 2781 . . . . 5 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)))
3736exp32 420 . . . 4 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑧 ∈ ℋ → ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)))))
3837ralrimdv 3111 . . 3 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ∀𝑧 ∈ ℋ ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧))))
3938ralrimivv 3113 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)))
40 ellnop 30121 . 2 ((𝐴 ·op 𝑇) ∈ LinOp ↔ ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧))))
414, 39, 40sylanbrc 582 1 (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ LinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  chba 29182   + cva 29183   · csm 29184   ·op chot 29202  LinOpclo 29210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-mulcom 10866  ax-hilex 29262  ax-hfvadd 29263  ax-hfvmul 29268  ax-hvmulass 29270  ax-hvdistr1 29271
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-homul 29994  df-lnop 30104
This theorem is referenced by:  lnophdi  30265  bdophmi  30295
  Copyright terms: Public domain W3C validator