Step | Hyp | Ref
| Expression |
1 | | lnopm.1 |
. . . 4
⊢ 𝑇 ∈ LinOp |
2 | 1 | lnopfi 30331 |
. . 3
⊢ 𝑇: ℋ⟶
ℋ |
3 | | homulcl 30121 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)
→ (𝐴
·op 𝑇): ℋ⟶ ℋ) |
4 | 2, 3 | mpan2 688 |
. 2
⊢ (𝐴 ∈ ℂ → (𝐴 ·op
𝑇): ℋ⟶
ℋ) |
5 | | hvmulcl 29375 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥
·ℎ 𝑦) ∈ ℋ) |
6 | | hvaddcl 29374 |
. . . . . . . 8
⊢ (((𝑥
·ℎ 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 ·ℎ 𝑦) +ℎ 𝑧) ∈
ℋ) |
7 | 5, 6 | sylan 580 |
. . . . . . 7
⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) |
8 | | homval 30103 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧
((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) → ((𝐴 ·op 𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (𝐴 ·ℎ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)))) |
9 | 2, 8 | mp3an2 1448 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ ((𝑥
·ℎ 𝑦) +ℎ 𝑧) ∈ ℋ) → ((𝐴 ·op 𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = (𝐴 ·ℎ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)))) |
10 | 7, 9 | sylan2 593 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝐴 ·op
𝑇)‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = (𝐴 ·ℎ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)))) |
11 | | id 22 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → 𝐴 ∈
ℂ) |
12 | 2 | ffvelrni 6960 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℋ → (𝑇‘𝑦) ∈ ℋ) |
13 | | hvmulcl 29375 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝑥 ·ℎ (𝑇‘𝑦)) ∈ ℋ) |
14 | 12, 13 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥
·ℎ (𝑇‘𝑦)) ∈ ℋ) |
15 | 2 | ffvelrni 6960 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℋ → (𝑇‘𝑧) ∈ ℋ) |
16 | | ax-hvdistr1 29370 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ (𝑥
·ℎ (𝑇‘𝑦)) ∈ ℋ ∧ (𝑇‘𝑧) ∈ ℋ) → (𝐴 ·ℎ ((𝑥
·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) = ((𝐴 ·ℎ (𝑥
·ℎ (𝑇‘𝑦))) +ℎ (𝐴 ·ℎ (𝑇‘𝑧)))) |
17 | 11, 14, 15, 16 | syl3an 1159 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐴
·ℎ ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) = ((𝐴 ·ℎ (𝑥
·ℎ (𝑇‘𝑦))) +ℎ (𝐴 ·ℎ (𝑇‘𝑧)))) |
18 | 17 | 3expb 1119 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝐴
·ℎ ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) = ((𝐴 ·ℎ (𝑥
·ℎ (𝑇‘𝑦))) +ℎ (𝐴 ·ℎ (𝑇‘𝑧)))) |
19 | 1 | lnopli 30330 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) |
20 | 19 | 3expa 1117 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧))) |
21 | 20 | oveq2d 7291 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐴
·ℎ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))) = (𝐴 ·ℎ ((𝑥
·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) |
22 | 21 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝐴
·ℎ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧))) = (𝐴 ·ℎ ((𝑥
·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) |
23 | | homval 30103 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧
𝑦 ∈ ℋ) →
((𝐴
·op 𝑇)‘𝑦) = (𝐴 ·ℎ (𝑇‘𝑦))) |
24 | 2, 23 | mp3an2 1448 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝐴 ·op
𝑇)‘𝑦) = (𝐴 ·ℎ (𝑇‘𝑦))) |
25 | 24 | adantrl 713 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝐴 ·op
𝑇)‘𝑦) = (𝐴 ·ℎ (𝑇‘𝑦))) |
26 | 25 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥
·ℎ ((𝐴 ·op 𝑇)‘𝑦)) = (𝑥 ·ℎ (𝐴
·ℎ (𝑇‘𝑦)))) |
27 | | hvmulcom 29405 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑇‘𝑦) ∈ ℋ) → (𝐴 ·ℎ (𝑥
·ℎ (𝑇‘𝑦))) = (𝑥 ·ℎ (𝐴
·ℎ (𝑇‘𝑦)))) |
28 | 12, 27 | syl3an3 1164 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝐴
·ℎ (𝑥 ·ℎ (𝑇‘𝑦))) = (𝑥 ·ℎ (𝐴
·ℎ (𝑇‘𝑦)))) |
29 | 28 | 3expb 1119 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝐴
·ℎ (𝑥 ·ℎ (𝑇‘𝑦))) = (𝑥 ·ℎ (𝐴
·ℎ (𝑇‘𝑦)))) |
30 | 26, 29 | eqtr4d 2781 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥
·ℎ ((𝐴 ·op 𝑇)‘𝑦)) = (𝐴 ·ℎ (𝑥
·ℎ (𝑇‘𝑦)))) |
31 | | homval 30103 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧
𝑧 ∈ ℋ) →
((𝐴
·op 𝑇)‘𝑧) = (𝐴 ·ℎ (𝑇‘𝑧))) |
32 | 2, 31 | mp3an2 1448 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝐴 ·op
𝑇)‘𝑧) = (𝐴 ·ℎ (𝑇‘𝑧))) |
33 | 30, 32 | oveqan12d 7294 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ (𝐴 ∈ ℂ ∧ 𝑧 ∈ ℋ)) → ((𝑥
·ℎ ((𝐴 ·op 𝑇)‘𝑦)) +ℎ ((𝐴 ·op 𝑇)‘𝑧)) = ((𝐴 ·ℎ (𝑥
·ℎ (𝑇‘𝑦))) +ℎ (𝐴 ·ℎ (𝑇‘𝑧)))) |
34 | 33 | anandis 675 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑥
·ℎ ((𝐴 ·op 𝑇)‘𝑦)) +ℎ ((𝐴 ·op 𝑇)‘𝑧)) = ((𝐴 ·ℎ (𝑥
·ℎ (𝑇‘𝑦))) +ℎ (𝐴 ·ℎ (𝑇‘𝑧)))) |
35 | 18, 22, 34 | 3eqtr4rd 2789 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑥
·ℎ ((𝐴 ·op 𝑇)‘𝑦)) +ℎ ((𝐴 ·op 𝑇)‘𝑧)) = (𝐴 ·ℎ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)))) |
36 | 10, 35 | eqtr4d 2781 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝐴 ·op
𝑇)‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ ((𝐴 ·op
𝑇)‘𝑦)) +ℎ ((𝐴 ·op 𝑇)‘𝑧))) |
37 | 36 | exp32 421 |
. . . 4
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑧 ∈ ℋ → ((𝐴 ·op
𝑇)‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ ((𝐴 ·op
𝑇)‘𝑦)) +ℎ ((𝐴 ·op 𝑇)‘𝑧))))) |
38 | 37 | ralrimdv 3105 |
. . 3
⊢ (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) →
∀𝑧 ∈ ℋ
((𝐴
·op 𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ ((𝐴 ·op
𝑇)‘𝑦)) +ℎ ((𝐴 ·op 𝑇)‘𝑧)))) |
39 | 38 | ralrimivv 3122 |
. 2
⊢ (𝐴 ∈ ℂ →
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
((𝐴
·op 𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ ((𝐴 ·op
𝑇)‘𝑦)) +ℎ ((𝐴 ·op 𝑇)‘𝑧))) |
40 | | ellnop 30220 |
. 2
⊢ ((𝐴 ·op
𝑇) ∈ LinOp ↔
((𝐴
·op 𝑇): ℋ⟶ ℋ ∧
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℋ
∀𝑧 ∈ ℋ
((𝐴
·op 𝑇)‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ ((𝐴 ·op
𝑇)‘𝑦)) +ℎ ((𝐴 ·op 𝑇)‘𝑧)))) |
41 | 4, 39, 40 | sylanbrc 583 |
1
⊢ (𝐴 ∈ ℂ → (𝐴 ·op
𝑇) ∈
LinOp) |