HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopmi Structured version   Visualization version   GIF version

Theorem lnopmi 31929
Description: The scalar product of a linear operator is a linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopm.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopmi (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ LinOp)

Proof of Theorem lnopmi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopm.1 . . . 4 𝑇 ∈ LinOp
21lnopfi 31898 . . 3 𝑇: ℋ⟶ ℋ
3 homulcl 31688 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
42, 3mpan2 691 . 2 (𝐴 ∈ ℂ → (𝐴 ·op 𝑇): ℋ⟶ ℋ)
5 hvmulcl 30942 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
6 hvaddcl 30941 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
75, 6sylan 580 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
8 homval 31670 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))))
92, 8mp3an2 1451 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))))
107, 9sylan2 593 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))))
11 id 22 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
122ffvelcdmi 7055 . . . . . . . . . 10 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
13 hvmulcl 30942 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
1412, 13sylan2 593 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · (𝑇𝑦)) ∈ ℋ)
152ffvelcdmi 7055 . . . . . . . . 9 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
16 ax-hvdistr1 30937 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 · (𝑇𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ) → (𝐴 · ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) = ((𝐴 · (𝑥 · (𝑇𝑦))) + (𝐴 · (𝑇𝑧))))
1711, 14, 15, 16syl3an 1160 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐴 · ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) = ((𝐴 · (𝑥 · (𝑇𝑦))) + (𝐴 · (𝑇𝑧))))
18173expb 1120 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝐴 · ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) = ((𝐴 · (𝑥 · (𝑇𝑦))) + (𝐴 · (𝑇𝑧))))
191lnopli 31897 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
20193expa 1118 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
2120oveq2d 7403 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (𝐴 · ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
2221adantl 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (𝐴 · ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
23 homval 31670 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
242, 23mp3an2 1451 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
2524adantrl 716 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘𝑦) = (𝐴 · (𝑇𝑦)))
2625oveq2d 7403 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) = (𝑥 · (𝐴 · (𝑇𝑦))))
27 hvmulcom 30972 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝑇𝑦) ∈ ℋ) → (𝐴 · (𝑥 · (𝑇𝑦))) = (𝑥 · (𝐴 · (𝑇𝑦))))
2812, 27syl3an3 1165 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝐴 · (𝑥 · (𝑇𝑦))) = (𝑥 · (𝐴 · (𝑇𝑦))))
29283expb 1120 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝐴 · (𝑥 · (𝑇𝑦))) = (𝑥 · (𝐴 · (𝑇𝑦))))
3026, 29eqtr4d 2767 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) → (𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) = (𝐴 · (𝑥 · (𝑇𝑦))))
31 homval 31670 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑧 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑧) = (𝐴 · (𝑇𝑧)))
322, 31mp3an2 1451 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝑧) = (𝐴 · (𝑇𝑧)))
3330, 32oveqan12d 7406 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ)) ∧ (𝐴 ∈ ℂ ∧ 𝑧 ∈ ℋ)) → ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)) = ((𝐴 · (𝑥 · (𝑇𝑦))) + (𝐴 · (𝑇𝑧))))
3433anandis 678 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)) = ((𝐴 · (𝑥 · (𝑇𝑦))) + (𝐴 · (𝑇𝑧))))
3518, 22, 343eqtr4rd 2775 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)) = (𝐴 · (𝑇‘((𝑥 · 𝑦) + 𝑧))))
3610, 35eqtr4d 2767 . . . . 5 ((𝐴 ∈ ℂ ∧ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ)) → ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)))
3736exp32 420 . . . 4 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑧 ∈ ℋ → ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)))))
3837ralrimdv 3131 . . 3 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ∀𝑧 ∈ ℋ ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧))))
3938ralrimivv 3178 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧)))
40 ellnop 31787 . 2 ((𝐴 ·op 𝑇) ∈ LinOp ↔ ((𝐴 ·op 𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝐴 ·op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝐴 ·op 𝑇)‘𝑦)) + ((𝐴 ·op 𝑇)‘𝑧))))
414, 39, 40sylanbrc 583 1 (𝐴 ∈ ℂ → (𝐴 ·op 𝑇) ∈ LinOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  chba 30848   + cva 30849   · csm 30850   ·op chot 30868  LinOpclo 30876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-mulcom 11132  ax-hilex 30928  ax-hfvadd 30929  ax-hfvmul 30934  ax-hvmulass 30936  ax-hvdistr1 30937
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-homul 31660  df-lnop 31770
This theorem is referenced by:  lnophdi  31931  bdophmi  31961
  Copyright terms: Public domain W3C validator