Proof of Theorem hvsub4
Step | Hyp | Ref
| Expression |
1 | | hvaddcl 29374 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈
ℋ) |
2 | | hvaddcl 29374 |
. . 3
⊢ ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 +ℎ 𝐷) ∈
ℋ) |
3 | | hvsubval 29378 |
. . 3
⊢ (((𝐴 +ℎ 𝐵) ∈ ℋ ∧ (𝐶 +ℎ 𝐷) ∈ ℋ) → ((𝐴 +ℎ 𝐵) −ℎ
(𝐶 +ℎ
𝐷)) = ((𝐴 +ℎ 𝐵) +ℎ (-1
·ℎ (𝐶 +ℎ 𝐷)))) |
4 | 1, 2, 3 | syl2an 596 |
. 2
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) −ℎ
(𝐶 +ℎ
𝐷)) = ((𝐴 +ℎ 𝐵) +ℎ (-1
·ℎ (𝐶 +ℎ 𝐷)))) |
5 | | hvsubval 29378 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 −ℎ
𝐶) = (𝐴 +ℎ (-1
·ℎ 𝐶))) |
6 | 5 | ad2ant2r 744 |
. . . 4
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐴 −ℎ
𝐶) = (𝐴 +ℎ (-1
·ℎ 𝐶))) |
7 | | hvsubval 29378 |
. . . . 5
⊢ ((𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐵 −ℎ
𝐷) = (𝐵 +ℎ (-1
·ℎ 𝐷))) |
8 | 7 | ad2ant2l 743 |
. . . 4
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐵 −ℎ
𝐷) = (𝐵 +ℎ (-1
·ℎ 𝐷))) |
9 | 6, 8 | oveq12d 7293 |
. . 3
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 −ℎ
𝐶) +ℎ
(𝐵
−ℎ 𝐷)) = ((𝐴 +ℎ (-1
·ℎ 𝐶)) +ℎ (𝐵 +ℎ (-1
·ℎ 𝐷)))) |
10 | | neg1cn 12087 |
. . . . . . 7
⊢ -1 ∈
ℂ |
11 | | ax-hvdistr1 29370 |
. . . . . . 7
⊢ ((-1
∈ ℂ ∧ 𝐶
∈ ℋ ∧ 𝐷
∈ ℋ) → (-1 ·ℎ (𝐶 +ℎ 𝐷)) = ((-1
·ℎ 𝐶) +ℎ (-1
·ℎ 𝐷))) |
12 | 10, 11 | mp3an1 1447 |
. . . . . 6
⊢ ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (-1
·ℎ (𝐶 +ℎ 𝐷)) = ((-1 ·ℎ
𝐶) +ℎ (-1
·ℎ 𝐷))) |
13 | 12 | adantl 482 |
. . . . 5
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (-1
·ℎ (𝐶 +ℎ 𝐷)) = ((-1 ·ℎ
𝐶) +ℎ (-1
·ℎ 𝐷))) |
14 | 13 | oveq2d 7291 |
. . . 4
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (-1
·ℎ (𝐶 +ℎ 𝐷))) = ((𝐴 +ℎ 𝐵) +ℎ ((-1
·ℎ 𝐶) +ℎ (-1
·ℎ 𝐷)))) |
15 | | hvmulcl 29375 |
. . . . . . . . 9
⊢ ((-1
∈ ℂ ∧ 𝐶
∈ ℋ) → (-1 ·ℎ 𝐶) ∈ ℋ) |
16 | 10, 15 | mpan 687 |
. . . . . . . 8
⊢ (𝐶 ∈ ℋ → (-1
·ℎ 𝐶) ∈ ℋ) |
17 | 16 | anim2i 617 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ∈ ℋ ∧ (-1
·ℎ 𝐶) ∈ ℋ)) |
18 | | hvmulcl 29375 |
. . . . . . . . 9
⊢ ((-1
∈ ℂ ∧ 𝐷
∈ ℋ) → (-1 ·ℎ 𝐷) ∈ ℋ) |
19 | 10, 18 | mpan 687 |
. . . . . . . 8
⊢ (𝐷 ∈ ℋ → (-1
·ℎ 𝐷) ∈ ℋ) |
20 | 19 | anim2i 617 |
. . . . . . 7
⊢ ((𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐵 ∈ ℋ ∧ (-1
·ℎ 𝐷) ∈ ℋ)) |
21 | 17, 20 | anim12i 613 |
. . . . . 6
⊢ (((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ∈ ℋ ∧ (-1
·ℎ 𝐶) ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ (-1
·ℎ 𝐷) ∈ ℋ))) |
22 | 21 | an4s 657 |
. . . . 5
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ∈ ℋ ∧ (-1
·ℎ 𝐶) ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ (-1
·ℎ 𝐷) ∈ ℋ))) |
23 | | hvadd4 29398 |
. . . . 5
⊢ (((𝐴 ∈ ℋ ∧ (-1
·ℎ 𝐶) ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ (-1
·ℎ 𝐷) ∈ ℋ)) → ((𝐴 +ℎ (-1
·ℎ 𝐶)) +ℎ (𝐵 +ℎ (-1
·ℎ 𝐷))) = ((𝐴 +ℎ 𝐵) +ℎ ((-1
·ℎ 𝐶) +ℎ (-1
·ℎ 𝐷)))) |
24 | 22, 23 | syl 17 |
. . . 4
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ (-1
·ℎ 𝐶)) +ℎ (𝐵 +ℎ (-1
·ℎ 𝐷))) = ((𝐴 +ℎ 𝐵) +ℎ ((-1
·ℎ 𝐶) +ℎ (-1
·ℎ 𝐷)))) |
25 | 14, 24 | eqtr4d 2781 |
. . 3
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) +ℎ (-1
·ℎ (𝐶 +ℎ 𝐷))) = ((𝐴 +ℎ (-1
·ℎ 𝐶)) +ℎ (𝐵 +ℎ (-1
·ℎ 𝐷)))) |
26 | 9, 25 | eqtr4d 2781 |
. 2
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 −ℎ
𝐶) +ℎ
(𝐵
−ℎ 𝐷)) = ((𝐴 +ℎ 𝐵) +ℎ (-1
·ℎ (𝐶 +ℎ 𝐷)))) |
27 | 4, 26 | eqtr4d 2781 |
1
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 +ℎ 𝐵) −ℎ
(𝐶 +ℎ
𝐷)) = ((𝐴 −ℎ 𝐶) +ℎ (𝐵 −ℎ
𝐷))) |