HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsub4 Structured version   Visualization version   GIF version

Theorem hvsub4 29979
Description: Hilbert vector space addition/subtraction law. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvsub4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 𝐶) + (𝐵 𝐷)))

Proof of Theorem hvsub4
StepHypRef Expression
1 hvaddcl 29954 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
2 hvaddcl 29954 . . 3 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 + 𝐷) ∈ ℋ)
3 hvsubval 29958 . . 3 (((𝐴 + 𝐵) ∈ ℋ ∧ (𝐶 + 𝐷) ∈ ℋ) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))))
41, 2, 3syl2an 596 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))))
5 hvsubval 29958 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 𝐶) = (𝐴 + (-1 · 𝐶)))
65ad2ant2r 745 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐴 𝐶) = (𝐴 + (-1 · 𝐶)))
7 hvsubval 29958 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐵 𝐷) = (𝐵 + (-1 · 𝐷)))
87ad2ant2l 744 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐵 𝐷) = (𝐵 + (-1 · 𝐷)))
96, 8oveq12d 7375 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 𝐶) + (𝐵 𝐷)) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷))))
10 neg1cn 12267 . . . . . . 7 -1 ∈ ℂ
11 ax-hvdistr1 29950 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷)))
1210, 11mp3an1 1448 . . . . . 6 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷)))
1312adantl 482 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (-1 · (𝐶 + 𝐷)) = ((-1 · 𝐶) + (-1 · 𝐷)))
1413oveq2d 7373 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))))
15 hvmulcl 29955 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-1 · 𝐶) ∈ ℋ)
1610, 15mpan 688 . . . . . . . 8 (𝐶 ∈ ℋ → (-1 · 𝐶) ∈ ℋ)
1716anim2i 617 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ∈ ℋ ∧ (-1 · 𝐶) ∈ ℋ))
18 hvmulcl 29955 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝐷 ∈ ℋ) → (-1 · 𝐷) ∈ ℋ)
1910, 18mpan 688 . . . . . . . 8 (𝐷 ∈ ℋ → (-1 · 𝐷) ∈ ℋ)
2019anim2i 617 . . . . . . 7 ((𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐵 ∈ ℋ ∧ (-1 · 𝐷) ∈ ℋ))
2117, 20anim12i 613 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ∈ ℋ ∧ (-1 · 𝐶) ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ (-1 · 𝐷) ∈ ℋ)))
2221an4s 658 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ∈ ℋ ∧ (-1 · 𝐶) ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ (-1 · 𝐷) ∈ ℋ)))
23 hvadd4 29978 . . . . 5 (((𝐴 ∈ ℋ ∧ (-1 · 𝐶) ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ (-1 · 𝐷) ∈ ℋ)) → ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷))) = ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))))
2422, 23syl 17 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷))) = ((𝐴 + 𝐵) + ((-1 · 𝐶) + (-1 · 𝐷))))
2514, 24eqtr4d 2779 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))) = ((𝐴 + (-1 · 𝐶)) + (𝐵 + (-1 · 𝐷))))
269, 25eqtr4d 2779 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 𝐶) + (𝐵 𝐷)) = ((𝐴 + 𝐵) + (-1 · (𝐶 + 𝐷))))
274, 26eqtr4d 2779 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 𝐶) + (𝐵 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  (class class class)co 7357  cc 11049  1c1 11052  -cneg 11386  chba 29861   + cva 29862   · csm 29863   cmv 29867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hfvmul 29947  ax-hvdistr1 29950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-ltxr 11194  df-sub 11387  df-neg 11388  df-hvsub 29913
This theorem is referenced by:  hvaddsub4  30020  5oalem2  30597  3oalem2  30605
  Copyright terms: Public domain W3C validator