| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubdistr1 | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvsubdistr1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn 12113 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 2 | hvmulcl 30957 | . . . . 5 ⊢ ((-1 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-1 ·ℎ 𝐶) ∈ ℋ) | |
| 3 | 1, 2 | mpan 690 | . . . 4 ⊢ (𝐶 ∈ ℋ → (-1 ·ℎ 𝐶) ∈ ℋ) |
| 4 | ax-hvdistr1 30952 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ (-1 ·ℎ 𝐶) ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶)))) | |
| 5 | 3, 4 | syl3an3 1165 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶)))) |
| 6 | hvmulcom 30987 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (-1 ·ℎ 𝐶)) = (-1 ·ℎ (𝐴 ·ℎ 𝐶))) | |
| 7 | 1, 6 | mp3an2 1451 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (-1 ·ℎ 𝐶)) = (-1 ·ℎ (𝐴 ·ℎ 𝐶))) |
| 8 | 7 | oveq2d 7365 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
| 9 | 8 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
| 10 | 5, 9 | eqtrd 2764 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
| 11 | hvsubval 30960 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 −ℎ 𝐶) = (𝐵 +ℎ (-1 ·ℎ 𝐶))) | |
| 12 | 11 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 −ℎ 𝐶) = (𝐵 +ℎ (-1 ·ℎ 𝐶))) |
| 13 | 12 | oveq2d 7365 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶)))) |
| 14 | hvmulcl 30957 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
| 15 | 14 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
| 16 | hvmulcl 30957 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
| 17 | 16 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
| 18 | hvsubval 30960 | . . 3 ⊢ (((𝐴 ·ℎ 𝐵) ∈ ℋ ∧ (𝐴 ·ℎ 𝐶) ∈ ℋ) → ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) | |
| 19 | 15, 17, 18 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
| 20 | 10, 13, 19 | 3eqtr4d 2774 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 1c1 11010 -cneg 11348 ℋchba 30863 +ℎ cva 30864 ·ℎ csm 30865 −ℎ cmv 30869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-hfvmul 30949 ax-hvmulass 30951 ax-hvdistr1 30952 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-neg 11350 df-hvsub 30915 |
| This theorem is referenced by: hvsubdistr1i 30996 hvmulcan 31016 |
| Copyright terms: Public domain | W3C validator |