| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hvsubdistr1 | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hvsubdistr1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn 12362 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 2 | hvmulcl 30961 | . . . . 5 ⊢ ((-1 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-1 ·ℎ 𝐶) ∈ ℋ) | |
| 3 | 1, 2 | mpan 690 | . . . 4 ⊢ (𝐶 ∈ ℋ → (-1 ·ℎ 𝐶) ∈ ℋ) |
| 4 | ax-hvdistr1 30956 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ (-1 ·ℎ 𝐶) ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶)))) | |
| 5 | 3, 4 | syl3an3 1165 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶)))) |
| 6 | hvmulcom 30991 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (-1 ·ℎ 𝐶)) = (-1 ·ℎ (𝐴 ·ℎ 𝐶))) | |
| 7 | 1, 6 | mp3an2 1450 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (-1 ·ℎ 𝐶)) = (-1 ·ℎ (𝐴 ·ℎ 𝐶))) |
| 8 | 7 | oveq2d 7429 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
| 9 | 8 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
| 10 | 5, 9 | eqtrd 2769 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
| 11 | hvsubval 30964 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 −ℎ 𝐶) = (𝐵 +ℎ (-1 ·ℎ 𝐶))) | |
| 12 | 11 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 −ℎ 𝐶) = (𝐵 +ℎ (-1 ·ℎ 𝐶))) |
| 13 | 12 | oveq2d 7429 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶)))) |
| 14 | hvmulcl 30961 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
| 15 | 14 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
| 16 | hvmulcl 30961 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
| 17 | 16 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
| 18 | hvsubval 30964 | . . 3 ⊢ (((𝐴 ·ℎ 𝐵) ∈ ℋ ∧ (𝐴 ·ℎ 𝐶) ∈ ℋ) → ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) | |
| 19 | 15, 17, 18 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
| 20 | 10, 13, 19 | 3eqtr4d 2779 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ℂcc 11135 1c1 11138 -cneg 11475 ℋchba 30867 +ℎ cva 30868 ·ℎ csm 30869 −ℎ cmv 30873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-hfvmul 30953 ax-hvmulass 30955 ax-hvdistr1 30956 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-ltxr 11282 df-sub 11476 df-neg 11477 df-hvsub 30919 |
| This theorem is referenced by: hvsubdistr1i 31000 hvmulcan 31020 |
| Copyright terms: Public domain | W3C validator |