Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvsubdistr1 | Structured version Visualization version GIF version |
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubdistr1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12087 | . . . . 5 ⊢ -1 ∈ ℂ | |
2 | hvmulcl 29375 | . . . . 5 ⊢ ((-1 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-1 ·ℎ 𝐶) ∈ ℋ) | |
3 | 1, 2 | mpan 687 | . . . 4 ⊢ (𝐶 ∈ ℋ → (-1 ·ℎ 𝐶) ∈ ℋ) |
4 | ax-hvdistr1 29370 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ (-1 ·ℎ 𝐶) ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶)))) | |
5 | 3, 4 | syl3an3 1164 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶)))) |
6 | hvmulcom 29405 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (-1 ·ℎ 𝐶)) = (-1 ·ℎ (𝐴 ·ℎ 𝐶))) | |
7 | 1, 6 | mp3an2 1448 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (-1 ·ℎ 𝐶)) = (-1 ·ℎ (𝐴 ·ℎ 𝐶))) |
8 | 7 | oveq2d 7291 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
9 | 8 | 3adant2 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
10 | 5, 9 | eqtrd 2778 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
11 | hvsubval 29378 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 −ℎ 𝐶) = (𝐵 +ℎ (-1 ·ℎ 𝐶))) | |
12 | 11 | 3adant1 1129 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 −ℎ 𝐶) = (𝐵 +ℎ (-1 ·ℎ 𝐶))) |
13 | 12 | oveq2d 7291 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶)))) |
14 | hvmulcl 29375 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
15 | 14 | 3adant3 1131 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
16 | hvmulcl 29375 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
17 | 16 | 3adant2 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
18 | hvsubval 29378 | . . 3 ⊢ (((𝐴 ·ℎ 𝐵) ∈ ℋ ∧ (𝐴 ·ℎ 𝐶) ∈ ℋ) → ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) | |
19 | 15, 17, 18 | syl2anc 584 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
20 | 10, 13, 19 | 3eqtr4d 2788 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 1c1 10872 -cneg 11206 ℋchba 29281 +ℎ cva 29282 ·ℎ csm 29283 −ℎ cmv 29287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-hfvmul 29367 ax-hvmulass 29369 ax-hvdistr1 29370 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sub 11207 df-neg 11208 df-hvsub 29333 |
This theorem is referenced by: hvsubdistr1i 29414 hvmulcan 29434 |
Copyright terms: Public domain | W3C validator |