Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvsubdistr1 | Structured version Visualization version GIF version |
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubdistr1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 11823 | . . . . 5 ⊢ -1 ∈ ℂ | |
2 | hvmulcl 28940 | . . . . 5 ⊢ ((-1 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-1 ·ℎ 𝐶) ∈ ℋ) | |
3 | 1, 2 | mpan 690 | . . . 4 ⊢ (𝐶 ∈ ℋ → (-1 ·ℎ 𝐶) ∈ ℋ) |
4 | ax-hvdistr1 28935 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ (-1 ·ℎ 𝐶) ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶)))) | |
5 | 3, 4 | syl3an3 1166 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶)))) |
6 | hvmulcom 28970 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (-1 ·ℎ 𝐶)) = (-1 ·ℎ (𝐴 ·ℎ 𝐶))) | |
7 | 1, 6 | mp3an2 1450 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (-1 ·ℎ 𝐶)) = (-1 ·ℎ (𝐴 ·ℎ 𝐶))) |
8 | 7 | oveq2d 7180 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
9 | 8 | 3adant2 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) +ℎ (𝐴 ·ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
10 | 5, 9 | eqtrd 2773 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶))) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
11 | hvsubval 28943 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 −ℎ 𝐶) = (𝐵 +ℎ (-1 ·ℎ 𝐶))) | |
12 | 11 | 3adant1 1131 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 −ℎ 𝐶) = (𝐵 +ℎ (-1 ·ℎ 𝐶))) |
13 | 12 | oveq2d 7180 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = (𝐴 ·ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶)))) |
14 | hvmulcl 28940 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
15 | 14 | 3adant3 1133 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
16 | hvmulcl 28940 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
17 | 16 | 3adant2 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
18 | hvsubval 28943 | . . 3 ⊢ (((𝐴 ·ℎ 𝐵) ∈ ℋ ∧ (𝐴 ·ℎ 𝐶) ∈ ℋ) → ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) | |
19 | 15, 17, 18 | syl2anc 587 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (-1 ·ℎ (𝐴 ·ℎ 𝐶)))) |
20 | 10, 13, 19 | 3eqtr4d 2783 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 (class class class)co 7164 ℂcc 10606 1c1 10609 -cneg 10942 ℋchba 28846 +ℎ cva 28847 ·ℎ csm 28848 −ℎ cmv 28852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-hfvmul 28932 ax-hvmulass 28934 ax-hvdistr1 28935 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-po 5438 df-so 5439 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-pnf 10748 df-mnf 10749 df-ltxr 10751 df-sub 10943 df-neg 10944 df-hvsub 28898 |
This theorem is referenced by: hvsubdistr1i 28979 hvmulcan 28999 |
Copyright terms: Public domain | W3C validator |