HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophsi Structured version   Visualization version   GIF version

Theorem lnophsi 31982
Description: The sum of two linear operators is linear. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopco.1 𝑆 ∈ LinOp
lnopco.2 𝑇 ∈ LinOp
Assertion
Ref Expression
lnophsi (𝑆 +op 𝑇) ∈ LinOp

Proof of Theorem lnophsi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopco.1 . . . 4 𝑆 ∈ LinOp
21lnopfi 31950 . . 3 𝑆: ℋ⟶ ℋ
3 lnopco.2 . . . 4 𝑇 ∈ LinOp
43lnopfi 31950 . . 3 𝑇: ℋ⟶ ℋ
52, 4hoaddcli 31749 . 2 (𝑆 +op 𝑇): ℋ⟶ ℋ
6 hvmulcl 30994 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
71lnopaddi 31952 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)))
83lnopaddi 31952 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧)))
97, 8oveq12d 7423 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))))
106, 9sylan 580 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))))
112ffvelcdmi 7073 . . . . . . . . 9 ((𝑥 · 𝑦) ∈ ℋ → (𝑆‘(𝑥 · 𝑦)) ∈ ℋ)
126, 11syl 17 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑆‘(𝑥 · 𝑦)) ∈ ℋ)
132ffvelcdmi 7073 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑆𝑧) ∈ ℋ)
1412, 13anim12i 613 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑆𝑧) ∈ ℋ))
154ffvelcdmi 7073 . . . . . . . . 9 ((𝑥 · 𝑦) ∈ ℋ → (𝑇‘(𝑥 · 𝑦)) ∈ ℋ)
166, 15syl 17 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 · 𝑦)) ∈ ℋ)
174ffvelcdmi 7073 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
1816, 17anim12i 613 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑇‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ))
19 hvadd4 31017 . . . . . . 7 ((((𝑆‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑆𝑧) ∈ ℋ) ∧ ((𝑇‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ)) → (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
2014, 18, 19syl2anc 584 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
2110, 20eqtrd 2770 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
22 hvaddcl 30993 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
236, 22sylan 580 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
24 hosval 31721 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))))
252, 4, 24mp3an12 1453 . . . . . 6 (((𝑥 · 𝑦) + 𝑧) ∈ ℋ → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))))
2623, 25syl 17 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))))
272ffvelcdmi 7073 . . . . . . . . 9 (𝑦 ∈ ℋ → (𝑆𝑦) ∈ ℋ)
284ffvelcdmi 7073 . . . . . . . . 9 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
2927, 28jca 511 . . . . . . . 8 (𝑦 ∈ ℋ → ((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
30 ax-hvdistr1 30989 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 · ((𝑆𝑦) + (𝑇𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
31303expb 1120 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ ((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ)) → (𝑥 · ((𝑆𝑦) + (𝑇𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
3229, 31sylan2 593 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆𝑦) + (𝑇𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
33 hosval 31721 . . . . . . . . . 10 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑦) = ((𝑆𝑦) + (𝑇𝑦)))
342, 4, 33mp3an12 1453 . . . . . . . . 9 (𝑦 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑦) = ((𝑆𝑦) + (𝑇𝑦)))
3534oveq2d 7421 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑥 · ((𝑆 +op 𝑇)‘𝑦)) = (𝑥 · ((𝑆𝑦) + (𝑇𝑦))))
3635adantl 481 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆 +op 𝑇)‘𝑦)) = (𝑥 · ((𝑆𝑦) + (𝑇𝑦))))
371lnopmuli 31953 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑆‘(𝑥 · 𝑦)) = (𝑥 · (𝑆𝑦)))
383lnopmuli 31953 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 · 𝑦)) = (𝑥 · (𝑇𝑦)))
3937, 38oveq12d 7423 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
4032, 36, 393eqtr4d 2780 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆 +op 𝑇)‘𝑦)) = ((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))))
41 hosval 31721 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑧) = ((𝑆𝑧) + (𝑇𝑧)))
422, 4, 41mp3an12 1453 . . . . . 6 (𝑧 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑧) = ((𝑆𝑧) + (𝑇𝑧)))
4340, 42oveqan12d 7424 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧)) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
4421, 26, 433eqtr4d 2780 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧)))
4544ralrimiva 3132 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ∀𝑧 ∈ ℋ ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧)))
4645rgen2 3184 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧))
47 ellnop 31839 . 2 ((𝑆 +op 𝑇) ∈ LinOp ↔ ((𝑆 +op 𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧))))
485, 46, 47mpbir2an 711 1 (𝑆 +op 𝑇) ∈ LinOp
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  wral 3051  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  chba 30900   + cva 30901   · csm 30902   +op chos 30919  LinOpclo 30928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-hilex 30980  ax-hfvadd 30981  ax-hvcom 30982  ax-hvass 30983  ax-hv0cl 30984  ax-hvaddid 30985  ax-hfvmul 30986  ax-hvmulid 30987  ax-hvdistr1 30989  ax-hvdistr2 30990  ax-hvmul0 30991
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-sub 11468  df-neg 11469  df-hvsub 30952  df-hosum 31711  df-lnop 31822
This theorem is referenced by:  lnophdi  31983  bdophsi  32077
  Copyright terms: Public domain W3C validator