HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophsi Structured version   Visualization version   GIF version

Theorem lnophsi 31804
Description: The sum of two linear operators is linear. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopco.1 𝑆 ∈ LinOp
lnopco.2 𝑇 ∈ LinOp
Assertion
Ref Expression
lnophsi (𝑆 +op 𝑇) ∈ LinOp

Proof of Theorem lnophsi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopco.1 . . . 4 𝑆 ∈ LinOp
21lnopfi 31772 . . 3 𝑆: ℋ⟶ ℋ
3 lnopco.2 . . . 4 𝑇 ∈ LinOp
43lnopfi 31772 . . 3 𝑇: ℋ⟶ ℋ
52, 4hoaddcli 31571 . 2 (𝑆 +op 𝑇): ℋ⟶ ℋ
6 hvmulcl 30816 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
71lnopaddi 31774 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)))
83lnopaddi 31774 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧)))
97, 8oveq12d 7432 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))))
106, 9sylan 579 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))))
112ffvelcdmi 7087 . . . . . . . . 9 ((𝑥 · 𝑦) ∈ ℋ → (𝑆‘(𝑥 · 𝑦)) ∈ ℋ)
126, 11syl 17 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑆‘(𝑥 · 𝑦)) ∈ ℋ)
132ffvelcdmi 7087 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑆𝑧) ∈ ℋ)
1412, 13anim12i 612 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑆𝑧) ∈ ℋ))
154ffvelcdmi 7087 . . . . . . . . 9 ((𝑥 · 𝑦) ∈ ℋ → (𝑇‘(𝑥 · 𝑦)) ∈ ℋ)
166, 15syl 17 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 · 𝑦)) ∈ ℋ)
174ffvelcdmi 7087 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
1816, 17anim12i 612 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑇‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ))
19 hvadd4 30839 . . . . . . 7 ((((𝑆‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑆𝑧) ∈ ℋ) ∧ ((𝑇‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ)) → (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
2014, 18, 19syl2anc 583 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
2110, 20eqtrd 2768 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
22 hvaddcl 30815 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
236, 22sylan 579 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
24 hosval 31543 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))))
252, 4, 24mp3an12 1448 . . . . . 6 (((𝑥 · 𝑦) + 𝑧) ∈ ℋ → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))))
2623, 25syl 17 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))))
272ffvelcdmi 7087 . . . . . . . . 9 (𝑦 ∈ ℋ → (𝑆𝑦) ∈ ℋ)
284ffvelcdmi 7087 . . . . . . . . 9 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
2927, 28jca 511 . . . . . . . 8 (𝑦 ∈ ℋ → ((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
30 ax-hvdistr1 30811 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 · ((𝑆𝑦) + (𝑇𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
31303expb 1118 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ ((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ)) → (𝑥 · ((𝑆𝑦) + (𝑇𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
3229, 31sylan2 592 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆𝑦) + (𝑇𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
33 hosval 31543 . . . . . . . . . 10 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑦) = ((𝑆𝑦) + (𝑇𝑦)))
342, 4, 33mp3an12 1448 . . . . . . . . 9 (𝑦 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑦) = ((𝑆𝑦) + (𝑇𝑦)))
3534oveq2d 7430 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑥 · ((𝑆 +op 𝑇)‘𝑦)) = (𝑥 · ((𝑆𝑦) + (𝑇𝑦))))
3635adantl 481 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆 +op 𝑇)‘𝑦)) = (𝑥 · ((𝑆𝑦) + (𝑇𝑦))))
371lnopmuli 31775 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑆‘(𝑥 · 𝑦)) = (𝑥 · (𝑆𝑦)))
383lnopmuli 31775 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 · 𝑦)) = (𝑥 · (𝑇𝑦)))
3937, 38oveq12d 7432 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
4032, 36, 393eqtr4d 2778 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆 +op 𝑇)‘𝑦)) = ((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))))
41 hosval 31543 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑧) = ((𝑆𝑧) + (𝑇𝑧)))
422, 4, 41mp3an12 1448 . . . . . 6 (𝑧 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑧) = ((𝑆𝑧) + (𝑇𝑧)))
4340, 42oveqan12d 7433 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧)) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
4421, 26, 433eqtr4d 2778 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧)))
4544ralrimiva 3142 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ∀𝑧 ∈ ℋ ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧)))
4645rgen2 3193 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧))
47 ellnop 31661 . 2 ((𝑆 +op 𝑇) ∈ LinOp ↔ ((𝑆 +op 𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧))))
485, 46, 47mpbir2an 710 1 (𝑆 +op 𝑇) ∈ LinOp
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1534  wcel 2099  wral 3057  wf 6538  cfv 6542  (class class class)co 7414  cc 11130  chba 30722   + cva 30723   · csm 30724   +op chos 30741  LinOpclo 30750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-hilex 30802  ax-hfvadd 30803  ax-hvcom 30804  ax-hvass 30805  ax-hv0cl 30806  ax-hvaddid 30807  ax-hfvmul 30808  ax-hvmulid 30809  ax-hvdistr1 30811  ax-hvdistr2 30812  ax-hvmul0 30813
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-ltxr 11277  df-sub 11470  df-neg 11471  df-hvsub 30774  df-hosum 31533  df-lnop 31644
This theorem is referenced by:  lnophdi  31805  bdophsi  31899
  Copyright terms: Public domain W3C validator