HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophsi Structured version   Visualization version   GIF version

Theorem lnophsi 30943
Description: The sum of two linear operators is linear. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopco.1 𝑆 ∈ LinOp
lnopco.2 𝑇 ∈ LinOp
Assertion
Ref Expression
lnophsi (𝑆 +op 𝑇) ∈ LinOp

Proof of Theorem lnophsi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopco.1 . . . 4 𝑆 ∈ LinOp
21lnopfi 30911 . . 3 𝑆: ℋ⟶ ℋ
3 lnopco.2 . . . 4 𝑇 ∈ LinOp
43lnopfi 30911 . . 3 𝑇: ℋ⟶ ℋ
52, 4hoaddcli 30710 . 2 (𝑆 +op 𝑇): ℋ⟶ ℋ
6 hvmulcl 29955 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
71lnopaddi 30913 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)))
83lnopaddi 30913 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧)))
97, 8oveq12d 7375 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))))
106, 9sylan 580 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))))
112ffvelcdmi 7034 . . . . . . . . 9 ((𝑥 · 𝑦) ∈ ℋ → (𝑆‘(𝑥 · 𝑦)) ∈ ℋ)
126, 11syl 17 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑆‘(𝑥 · 𝑦)) ∈ ℋ)
132ffvelcdmi 7034 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑆𝑧) ∈ ℋ)
1412, 13anim12i 613 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑆𝑧) ∈ ℋ))
154ffvelcdmi 7034 . . . . . . . . 9 ((𝑥 · 𝑦) ∈ ℋ → (𝑇‘(𝑥 · 𝑦)) ∈ ℋ)
166, 15syl 17 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 · 𝑦)) ∈ ℋ)
174ffvelcdmi 7034 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
1816, 17anim12i 613 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑇‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ))
19 hvadd4 29978 . . . . . . 7 ((((𝑆‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑆𝑧) ∈ ℋ) ∧ ((𝑇‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ)) → (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
2014, 18, 19syl2anc 584 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
2110, 20eqtrd 2776 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
22 hvaddcl 29954 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
236, 22sylan 580 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
24 hosval 30682 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))))
252, 4, 24mp3an12 1451 . . . . . 6 (((𝑥 · 𝑦) + 𝑧) ∈ ℋ → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))))
2623, 25syl 17 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))))
272ffvelcdmi 7034 . . . . . . . . 9 (𝑦 ∈ ℋ → (𝑆𝑦) ∈ ℋ)
284ffvelcdmi 7034 . . . . . . . . 9 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
2927, 28jca 512 . . . . . . . 8 (𝑦 ∈ ℋ → ((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
30 ax-hvdistr1 29950 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 · ((𝑆𝑦) + (𝑇𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
31303expb 1120 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ ((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ)) → (𝑥 · ((𝑆𝑦) + (𝑇𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
3229, 31sylan2 593 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆𝑦) + (𝑇𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
33 hosval 30682 . . . . . . . . . 10 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑦) = ((𝑆𝑦) + (𝑇𝑦)))
342, 4, 33mp3an12 1451 . . . . . . . . 9 (𝑦 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑦) = ((𝑆𝑦) + (𝑇𝑦)))
3534oveq2d 7373 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑥 · ((𝑆 +op 𝑇)‘𝑦)) = (𝑥 · ((𝑆𝑦) + (𝑇𝑦))))
3635adantl 482 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆 +op 𝑇)‘𝑦)) = (𝑥 · ((𝑆𝑦) + (𝑇𝑦))))
371lnopmuli 30914 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑆‘(𝑥 · 𝑦)) = (𝑥 · (𝑆𝑦)))
383lnopmuli 30914 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 · 𝑦)) = (𝑥 · (𝑇𝑦)))
3937, 38oveq12d 7375 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
4032, 36, 393eqtr4d 2786 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆 +op 𝑇)‘𝑦)) = ((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))))
41 hosval 30682 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑧) = ((𝑆𝑧) + (𝑇𝑧)))
422, 4, 41mp3an12 1451 . . . . . 6 (𝑧 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑧) = ((𝑆𝑧) + (𝑇𝑧)))
4340, 42oveqan12d 7376 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧)) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
4421, 26, 433eqtr4d 2786 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧)))
4544ralrimiva 3143 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ∀𝑧 ∈ ℋ ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧)))
4645rgen2 3194 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧))
47 ellnop 30800 . 2 ((𝑆 +op 𝑇) ∈ LinOp ↔ ((𝑆 +op 𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧))))
485, 46, 47mpbir2an 709 1 (𝑆 +op 𝑇) ∈ LinOp
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wcel 2106  wral 3064  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  chba 29861   + cva 29862   · csm 29863   +op chos 29880  LinOpclo 29889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-hilex 29941  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvdistr1 29950  ax-hvdistr2 29951  ax-hvmul0 29952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-ltxr 11194  df-sub 11387  df-neg 11388  df-hvsub 29913  df-hosum 30672  df-lnop 30783
This theorem is referenced by:  lnophdi  30944  bdophsi  31038
  Copyright terms: Public domain W3C validator