HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophsi Structured version   Visualization version   GIF version

Theorem lnophsi 32030
Description: The sum of two linear operators is linear. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopco.1 𝑆 ∈ LinOp
lnopco.2 𝑇 ∈ LinOp
Assertion
Ref Expression
lnophsi (𝑆 +op 𝑇) ∈ LinOp

Proof of Theorem lnophsi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopco.1 . . . 4 𝑆 ∈ LinOp
21lnopfi 31998 . . 3 𝑆: ℋ⟶ ℋ
3 lnopco.2 . . . 4 𝑇 ∈ LinOp
43lnopfi 31998 . . 3 𝑇: ℋ⟶ ℋ
52, 4hoaddcli 31797 . 2 (𝑆 +op 𝑇): ℋ⟶ ℋ
6 hvmulcl 31042 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · 𝑦) ∈ ℋ)
71lnopaddi 32000 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑆‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)))
83lnopaddi 32000 . . . . . . . 8 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧)))
97, 8oveq12d 7449 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))))
106, 9sylan 580 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))))
112ffvelcdmi 7103 . . . . . . . . 9 ((𝑥 · 𝑦) ∈ ℋ → (𝑆‘(𝑥 · 𝑦)) ∈ ℋ)
126, 11syl 17 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑆‘(𝑥 · 𝑦)) ∈ ℋ)
132ffvelcdmi 7103 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑆𝑧) ∈ ℋ)
1412, 13anim12i 613 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑆𝑧) ∈ ℋ))
154ffvelcdmi 7103 . . . . . . . . 9 ((𝑥 · 𝑦) ∈ ℋ → (𝑇‘(𝑥 · 𝑦)) ∈ ℋ)
166, 15syl 17 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 · 𝑦)) ∈ ℋ)
174ffvelcdmi 7103 . . . . . . . 8 (𝑧 ∈ ℋ → (𝑇𝑧) ∈ ℋ)
1816, 17anim12i 613 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑇‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ))
19 hvadd4 31065 . . . . . . 7 ((((𝑆‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑆𝑧) ∈ ℋ) ∧ ((𝑇‘(𝑥 · 𝑦)) ∈ ℋ ∧ (𝑇𝑧) ∈ ℋ)) → (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
2014, 18, 19syl2anc 584 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → (((𝑆‘(𝑥 · 𝑦)) + (𝑆𝑧)) + ((𝑇‘(𝑥 · 𝑦)) + (𝑇𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
2110, 20eqtrd 2775 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
22 hvaddcl 31041 . . . . . . 7 (((𝑥 · 𝑦) ∈ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
236, 22sylan 580 . . . . . 6 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · 𝑦) + 𝑧) ∈ ℋ)
24 hosval 31769 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ ((𝑥 · 𝑦) + 𝑧) ∈ ℋ) → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))))
252, 4, 24mp3an12 1450 . . . . . 6 (((𝑥 · 𝑦) + 𝑧) ∈ ℋ → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))))
2623, 25syl 17 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑆‘((𝑥 · 𝑦) + 𝑧)) + (𝑇‘((𝑥 · 𝑦) + 𝑧))))
272ffvelcdmi 7103 . . . . . . . . 9 (𝑦 ∈ ℋ → (𝑆𝑦) ∈ ℋ)
284ffvelcdmi 7103 . . . . . . . . 9 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
2927, 28jca 511 . . . . . . . 8 (𝑦 ∈ ℋ → ((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
30 ax-hvdistr1 31037 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ (𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → (𝑥 · ((𝑆𝑦) + (𝑇𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
31303expb 1119 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ ((𝑆𝑦) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ)) → (𝑥 · ((𝑆𝑦) + (𝑇𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
3229, 31sylan2 593 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆𝑦) + (𝑇𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
33 hosval 31769 . . . . . . . . . 10 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑦) = ((𝑆𝑦) + (𝑇𝑦)))
342, 4, 33mp3an12 1450 . . . . . . . . 9 (𝑦 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑦) = ((𝑆𝑦) + (𝑇𝑦)))
3534oveq2d 7447 . . . . . . . 8 (𝑦 ∈ ℋ → (𝑥 · ((𝑆 +op 𝑇)‘𝑦)) = (𝑥 · ((𝑆𝑦) + (𝑇𝑦))))
3635adantl 481 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆 +op 𝑇)‘𝑦)) = (𝑥 · ((𝑆𝑦) + (𝑇𝑦))))
371lnopmuli 32001 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑆‘(𝑥 · 𝑦)) = (𝑥 · (𝑆𝑦)))
383lnopmuli 32001 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑇‘(𝑥 · 𝑦)) = (𝑥 · (𝑇𝑦)))
3937, 38oveq12d 7449 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) = ((𝑥 · (𝑆𝑦)) + (𝑥 · (𝑇𝑦))))
4032, 36, 393eqtr4d 2785 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → (𝑥 · ((𝑆 +op 𝑇)‘𝑦)) = ((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))))
41 hosval 31769 . . . . . . 7 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑧 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑧) = ((𝑆𝑧) + (𝑇𝑧)))
422, 4, 41mp3an12 1450 . . . . . 6 (𝑧 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑧) = ((𝑆𝑧) + (𝑇𝑧)))
4340, 42oveqan12d 7450 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧)) = (((𝑆‘(𝑥 · 𝑦)) + (𝑇‘(𝑥 · 𝑦))) + ((𝑆𝑧) + (𝑇𝑧))))
4421, 26, 433eqtr4d 2785 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) ∧ 𝑧 ∈ ℋ) → ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧)))
4544ralrimiva 3144 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ) → ∀𝑧 ∈ ℋ ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧)))
4645rgen2 3197 . 2 𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧))
47 ellnop 31887 . 2 ((𝑆 +op 𝑇) ∈ LinOp ↔ ((𝑆 +op 𝑇): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ ((𝑆 +op 𝑇)‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · ((𝑆 +op 𝑇)‘𝑦)) + ((𝑆 +op 𝑇)‘𝑧))))
485, 46, 47mpbir2an 711 1 (𝑆 +op 𝑇) ∈ LinOp
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  wral 3059  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  chba 30948   + cva 30949   · csm 30950   +op chos 30967  LinOpclo 30976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030  ax-hvass 31031  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvdistr1 31037  ax-hvdistr2 31038  ax-hvmul0 31039
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-sub 11492  df-neg 11493  df-hvsub 31000  df-hosum 31759  df-lnop 31870
This theorem is referenced by:  lnophdi  32031  bdophsi  32125
  Copyright terms: Public domain W3C validator