HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shscli Structured version   Visualization version   GIF version

Theorem shscli 30259
Description: Closure of subspace sum. (Contributed by NM, 15-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
shscl.1 𝐴S
shscl.2 𝐵S
Assertion
Ref Expression
shscli (𝐴 + 𝐵) ∈ S

Proof of Theorem shscli
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑤 𝑔 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shscl.1 . . . 4 𝐴S
2 shscl.2 . . . 4 𝐵S
3 shsss 30255 . . . 4 ((𝐴S𝐵S ) → (𝐴 + 𝐵) ⊆ ℋ)
41, 2, 3mp2an 690 . . 3 (𝐴 + 𝐵) ⊆ ℋ
5 sh0 30158 . . . . . 6 (𝐴S → 0𝐴)
61, 5ax-mp 5 . . . . 5 0𝐴
7 sh0 30158 . . . . . 6 (𝐵S → 0𝐵)
82, 7ax-mp 5 . . . . 5 0𝐵
9 ax-hv0cl 29945 . . . . . . 7 0 ∈ ℋ
109hvaddid2i 29971 . . . . . 6 (0 + 0) = 0
1110eqcomi 2745 . . . . 5 0 = (0 + 0)
12 rspceov 7404 . . . . 5 ((0𝐴 ∧ 0𝐵 ∧ 0 = (0 + 0)) → ∃𝑥𝐴𝑦𝐵 0 = (𝑥 + 𝑦))
136, 8, 11, 12mp3an 1461 . . . 4 𝑥𝐴𝑦𝐵 0 = (𝑥 + 𝑦)
141, 2shseli 30258 . . . 4 (0 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 0 = (𝑥 + 𝑦))
1513, 14mpbir 230 . . 3 0 ∈ (𝐴 + 𝐵)
164, 15pm3.2i 471 . 2 ((𝐴 + 𝐵) ⊆ ℋ ∧ 0 ∈ (𝐴 + 𝐵))
171, 2shseli 30258 . . . . . 6 (𝑥 ∈ (𝐴 + 𝐵) ↔ ∃𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤))
181, 2shseli 30258 . . . . . 6 (𝑦 ∈ (𝐴 + 𝐵) ↔ ∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢))
19 shaddcl 30159 . . . . . . . . . . . . . . . 16 ((𝐴S𝑧𝐴𝑣𝐴) → (𝑧 + 𝑣) ∈ 𝐴)
201, 19mp3an1 1448 . . . . . . . . . . . . . . 15 ((𝑧𝐴𝑣𝐴) → (𝑧 + 𝑣) ∈ 𝐴)
2120ad2ant2r 745 . . . . . . . . . . . . . 14 (((𝑧𝐴𝑤𝐵) ∧ (𝑣𝐴𝑢𝐵)) → (𝑧 + 𝑣) ∈ 𝐴)
2221ad2ant2r 745 . . . . . . . . . . . . 13 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑧 + 𝑣) ∈ 𝐴)
23 shaddcl 30159 . . . . . . . . . . . . . . . 16 ((𝐵S𝑤𝐵𝑢𝐵) → (𝑤 + 𝑢) ∈ 𝐵)
242, 23mp3an1 1448 . . . . . . . . . . . . . . 15 ((𝑤𝐵𝑢𝐵) → (𝑤 + 𝑢) ∈ 𝐵)
2524ad2ant2l 744 . . . . . . . . . . . . . 14 (((𝑧𝐴𝑤𝐵) ∧ (𝑣𝐴𝑢𝐵)) → (𝑤 + 𝑢) ∈ 𝐵)
2625ad2ant2r 745 . . . . . . . . . . . . 13 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑤 + 𝑢) ∈ 𝐵)
27 oveq12 7366 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑧 + 𝑤) ∧ 𝑦 = (𝑣 + 𝑢)) → (𝑥 + 𝑦) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
2827ad2ant2l 744 . . . . . . . . . . . . . 14 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑥 + 𝑦) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
291sheli 30156 . . . . . . . . . . . . . . . . . 18 (𝑧𝐴𝑧 ∈ ℋ)
301sheli 30156 . . . . . . . . . . . . . . . . . 18 (𝑣𝐴𝑣 ∈ ℋ)
3129, 30anim12i 613 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴𝑣𝐴) → (𝑧 ∈ ℋ ∧ 𝑣 ∈ ℋ))
322sheli 30156 . . . . . . . . . . . . . . . . . 18 (𝑤𝐵𝑤 ∈ ℋ)
332sheli 30156 . . . . . . . . . . . . . . . . . 18 (𝑢𝐵𝑢 ∈ ℋ)
3432, 33anim12i 613 . . . . . . . . . . . . . . . . 17 ((𝑤𝐵𝑢𝐵) → (𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ))
35 hvadd4 29978 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℋ) ∧ (𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ)) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3631, 34, 35syl2an 596 . . . . . . . . . . . . . . . 16 (((𝑧𝐴𝑣𝐴) ∧ (𝑤𝐵𝑢𝐵)) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3736an4s 658 . . . . . . . . . . . . . . 15 (((𝑧𝐴𝑤𝐵) ∧ (𝑣𝐴𝑢𝐵)) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3837ad2ant2r 745 . . . . . . . . . . . . . 14 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3928, 38eqtr4d 2779 . . . . . . . . . . . . 13 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑥 + 𝑦) = ((𝑧 + 𝑣) + (𝑤 + 𝑢)))
40 rspceov 7404 . . . . . . . . . . . . 13 (((𝑧 + 𝑣) ∈ 𝐴 ∧ (𝑤 + 𝑢) ∈ 𝐵 ∧ (𝑥 + 𝑦) = ((𝑧 + 𝑣) + (𝑤 + 𝑢))) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4122, 26, 39, 40syl3anc 1371 . . . . . . . . . . . 12 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4241ancoms 459 . . . . . . . . . . 11 ((((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢)) ∧ ((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤))) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4342exp43 437 . . . . . . . . . 10 ((𝑣𝐴𝑢𝐵) → (𝑦 = (𝑣 + 𝑢) → ((𝑧𝐴𝑤𝐵) → (𝑥 = (𝑧 + 𝑤) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔)))))
4443rexlimivv 3196 . . . . . . . . 9 (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → ((𝑧𝐴𝑤𝐵) → (𝑥 = (𝑧 + 𝑤) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))))
4544com3l 89 . . . . . . . 8 ((𝑧𝐴𝑤𝐵) → (𝑥 = (𝑧 + 𝑤) → (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))))
4645rexlimivv 3196 . . . . . . 7 (∃𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤) → (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔)))
4746imp 407 . . . . . 6 ((∃𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤) ∧ ∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢)) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4817, 18, 47syl2anb 598 . . . . 5 ((𝑥 ∈ (𝐴 + 𝐵) ∧ 𝑦 ∈ (𝐴 + 𝐵)) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
491, 2shseli 30258 . . . . 5 ((𝑥 + 𝑦) ∈ (𝐴 + 𝐵) ↔ ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
5048, 49sylibr 233 . . . 4 ((𝑥 ∈ (𝐴 + 𝐵) ∧ 𝑦 ∈ (𝐴 + 𝐵)) → (𝑥 + 𝑦) ∈ (𝐴 + 𝐵))
5150rgen2 3194 . . 3 𝑥 ∈ (𝐴 + 𝐵)∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 + 𝑦) ∈ (𝐴 + 𝐵)
52 shmulcl 30160 . . . . . . . . . . . . . 14 ((𝐴S𝑥 ∈ ℂ ∧ 𝑣𝐴) → (𝑥 · 𝑣) ∈ 𝐴)
531, 52mp3an1 1448 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑣𝐴) → (𝑥 · 𝑣) ∈ 𝐴)
5453adantrr 715 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑣) ∈ 𝐴)
55 shmulcl 30160 . . . . . . . . . . . . . . 15 ((𝐵S𝑥 ∈ ℂ ∧ 𝑢𝐵) → (𝑥 · 𝑢) ∈ 𝐵)
562, 55mp3an1 1448 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑢𝐵) → (𝑥 · 𝑢) ∈ 𝐵)
5756adantrr 715 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢))) → (𝑥 · 𝑢) ∈ 𝐵)
5857adantrl 714 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑢) ∈ 𝐵)
59 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑦 = (𝑣 + 𝑢) → (𝑥 · 𝑦) = (𝑥 · (𝑣 + 𝑢)))
6059adantl 482 . . . . . . . . . . . . . 14 ((𝑢𝐵𝑦 = (𝑣 + 𝑢)) → (𝑥 · 𝑦) = (𝑥 · (𝑣 + 𝑢)))
6160ad2antll 727 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑦) = (𝑥 · (𝑣 + 𝑢)))
62 id 22 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
63 ax-hvdistr1 29950 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
6462, 30, 33, 63syl3an 1160 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑣𝐴𝑢𝐵) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
65643expb 1120 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝑣𝐴𝑢𝐵)) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
6665adantrrr 723 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
6761, 66eqtrd 2776 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑦) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
68 rspceov 7404 . . . . . . . . . . . 12 (((𝑥 · 𝑣) ∈ 𝐴 ∧ (𝑥 · 𝑢) ∈ 𝐵 ∧ (𝑥 · 𝑦) = ((𝑥 · 𝑣) + (𝑥 · 𝑢))) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
6954, 58, 67, 68syl3anc 1371 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7069ancoms 459 . . . . . . . . . 10 (((𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢))) ∧ 𝑥 ∈ ℂ) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7170exp42 436 . . . . . . . . 9 (𝑣𝐴 → (𝑢𝐵 → (𝑦 = (𝑣 + 𝑢) → (𝑥 ∈ ℂ → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔)))))
7271imp 407 . . . . . . . 8 ((𝑣𝐴𝑢𝐵) → (𝑦 = (𝑣 + 𝑢) → (𝑥 ∈ ℂ → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))))
7372rexlimivv 3196 . . . . . . 7 (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → (𝑥 ∈ ℂ → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔)))
7473impcom 408 . . . . . 6 ((𝑥 ∈ ℂ ∧ ∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢)) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7518, 74sylan2b 594 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (𝐴 + 𝐵)) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
761, 2shseli 30258 . . . . 5 ((𝑥 · 𝑦) ∈ (𝐴 + 𝐵) ↔ ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7775, 76sylibr 233 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (𝐴 + 𝐵)) → (𝑥 · 𝑦) ∈ (𝐴 + 𝐵))
7877rgen2 3194 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 · 𝑦) ∈ (𝐴 + 𝐵)
7951, 78pm3.2i 471 . 2 (∀𝑥 ∈ (𝐴 + 𝐵)∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 + 𝑦) ∈ (𝐴 + 𝐵) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 · 𝑦) ∈ (𝐴 + 𝐵))
80 issh2 30151 . 2 ((𝐴 + 𝐵) ∈ S ↔ (((𝐴 + 𝐵) ⊆ ℋ ∧ 0 ∈ (𝐴 + 𝐵)) ∧ (∀𝑥 ∈ (𝐴 + 𝐵)∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 + 𝑦) ∈ (𝐴 + 𝐵) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 · 𝑦) ∈ (𝐴 + 𝐵))))
8116, 79, 80mpbir2an 709 1 (𝐴 + 𝐵) ∈ S
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  wss 3910  (class class class)co 7357  cc 11049  chba 29861   + cva 29862   · csm 29863  0c0v 29866   S csh 29870   + cph 29873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-hilex 29941  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvdistr1 29950  ax-hvdistr2 29951  ax-hvmul0 29952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-ltxr 11194  df-sub 11387  df-neg 11388  df-grpo 29435  df-ablo 29487  df-hvsub 29913  df-sh 30149  df-shs 30250
This theorem is referenced by:  shscl  30260  shsval2i  30329  shjshsi  30434  spanuni  30486  5oalem1  30596  5oalem3  30598  5oalem5  30600  5oalem6  30601  5oai  30603  3oalem2  30605  3oalem6  30609  mayete3i  30670  sumdmdlem  31360
  Copyright terms: Public domain W3C validator