HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shscli Structured version   Visualization version   GIF version

Theorem shscli 29100
Description: Closure of subspace sum. (Contributed by NM, 15-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
shscl.1 𝐴S
shscl.2 𝐵S
Assertion
Ref Expression
shscli (𝐴 + 𝐵) ∈ S

Proof of Theorem shscli
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑤 𝑔 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shscl.1 . . . 4 𝐴S
2 shscl.2 . . . 4 𝐵S
3 shsss 29096 . . . 4 ((𝐴S𝐵S ) → (𝐴 + 𝐵) ⊆ ℋ)
41, 2, 3mp2an 691 . . 3 (𝐴 + 𝐵) ⊆ ℋ
5 sh0 28999 . . . . . 6 (𝐴S → 0𝐴)
61, 5ax-mp 5 . . . . 5 0𝐴
7 sh0 28999 . . . . . 6 (𝐵S → 0𝐵)
82, 7ax-mp 5 . . . . 5 0𝐵
9 ax-hv0cl 28786 . . . . . . 7 0 ∈ ℋ
109hvaddid2i 28812 . . . . . 6 (0 + 0) = 0
1110eqcomi 2807 . . . . 5 0 = (0 + 0)
12 rspceov 7182 . . . . 5 ((0𝐴 ∧ 0𝐵 ∧ 0 = (0 + 0)) → ∃𝑥𝐴𝑦𝐵 0 = (𝑥 + 𝑦))
136, 8, 11, 12mp3an 1458 . . . 4 𝑥𝐴𝑦𝐵 0 = (𝑥 + 𝑦)
141, 2shseli 29099 . . . 4 (0 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 0 = (𝑥 + 𝑦))
1513, 14mpbir 234 . . 3 0 ∈ (𝐴 + 𝐵)
164, 15pm3.2i 474 . 2 ((𝐴 + 𝐵) ⊆ ℋ ∧ 0 ∈ (𝐴 + 𝐵))
171, 2shseli 29099 . . . . . 6 (𝑥 ∈ (𝐴 + 𝐵) ↔ ∃𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤))
181, 2shseli 29099 . . . . . 6 (𝑦 ∈ (𝐴 + 𝐵) ↔ ∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢))
19 shaddcl 29000 . . . . . . . . . . . . . . . 16 ((𝐴S𝑧𝐴𝑣𝐴) → (𝑧 + 𝑣) ∈ 𝐴)
201, 19mp3an1 1445 . . . . . . . . . . . . . . 15 ((𝑧𝐴𝑣𝐴) → (𝑧 + 𝑣) ∈ 𝐴)
2120ad2ant2r 746 . . . . . . . . . . . . . 14 (((𝑧𝐴𝑤𝐵) ∧ (𝑣𝐴𝑢𝐵)) → (𝑧 + 𝑣) ∈ 𝐴)
2221ad2ant2r 746 . . . . . . . . . . . . 13 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑧 + 𝑣) ∈ 𝐴)
23 shaddcl 29000 . . . . . . . . . . . . . . . 16 ((𝐵S𝑤𝐵𝑢𝐵) → (𝑤 + 𝑢) ∈ 𝐵)
242, 23mp3an1 1445 . . . . . . . . . . . . . . 15 ((𝑤𝐵𝑢𝐵) → (𝑤 + 𝑢) ∈ 𝐵)
2524ad2ant2l 745 . . . . . . . . . . . . . 14 (((𝑧𝐴𝑤𝐵) ∧ (𝑣𝐴𝑢𝐵)) → (𝑤 + 𝑢) ∈ 𝐵)
2625ad2ant2r 746 . . . . . . . . . . . . 13 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑤 + 𝑢) ∈ 𝐵)
27 oveq12 7144 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑧 + 𝑤) ∧ 𝑦 = (𝑣 + 𝑢)) → (𝑥 + 𝑦) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
2827ad2ant2l 745 . . . . . . . . . . . . . 14 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑥 + 𝑦) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
291sheli 28997 . . . . . . . . . . . . . . . . . 18 (𝑧𝐴𝑧 ∈ ℋ)
301sheli 28997 . . . . . . . . . . . . . . . . . 18 (𝑣𝐴𝑣 ∈ ℋ)
3129, 30anim12i 615 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴𝑣𝐴) → (𝑧 ∈ ℋ ∧ 𝑣 ∈ ℋ))
322sheli 28997 . . . . . . . . . . . . . . . . . 18 (𝑤𝐵𝑤 ∈ ℋ)
332sheli 28997 . . . . . . . . . . . . . . . . . 18 (𝑢𝐵𝑢 ∈ ℋ)
3432, 33anim12i 615 . . . . . . . . . . . . . . . . 17 ((𝑤𝐵𝑢𝐵) → (𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ))
35 hvadd4 28819 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℋ) ∧ (𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ)) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3631, 34, 35syl2an 598 . . . . . . . . . . . . . . . 16 (((𝑧𝐴𝑣𝐴) ∧ (𝑤𝐵𝑢𝐵)) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3736an4s 659 . . . . . . . . . . . . . . 15 (((𝑧𝐴𝑤𝐵) ∧ (𝑣𝐴𝑢𝐵)) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3837ad2ant2r 746 . . . . . . . . . . . . . 14 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3928, 38eqtr4d 2836 . . . . . . . . . . . . 13 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑥 + 𝑦) = ((𝑧 + 𝑣) + (𝑤 + 𝑢)))
40 rspceov 7182 . . . . . . . . . . . . 13 (((𝑧 + 𝑣) ∈ 𝐴 ∧ (𝑤 + 𝑢) ∈ 𝐵 ∧ (𝑥 + 𝑦) = ((𝑧 + 𝑣) + (𝑤 + 𝑢))) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4122, 26, 39, 40syl3anc 1368 . . . . . . . . . . . 12 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4241ancoms 462 . . . . . . . . . . 11 ((((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢)) ∧ ((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤))) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4342exp43 440 . . . . . . . . . 10 ((𝑣𝐴𝑢𝐵) → (𝑦 = (𝑣 + 𝑢) → ((𝑧𝐴𝑤𝐵) → (𝑥 = (𝑧 + 𝑤) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔)))))
4443rexlimivv 3251 . . . . . . . . 9 (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → ((𝑧𝐴𝑤𝐵) → (𝑥 = (𝑧 + 𝑤) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))))
4544com3l 89 . . . . . . . 8 ((𝑧𝐴𝑤𝐵) → (𝑥 = (𝑧 + 𝑤) → (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))))
4645rexlimivv 3251 . . . . . . 7 (∃𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤) → (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔)))
4746imp 410 . . . . . 6 ((∃𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤) ∧ ∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢)) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4817, 18, 47syl2anb 600 . . . . 5 ((𝑥 ∈ (𝐴 + 𝐵) ∧ 𝑦 ∈ (𝐴 + 𝐵)) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
491, 2shseli 29099 . . . . 5 ((𝑥 + 𝑦) ∈ (𝐴 + 𝐵) ↔ ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
5048, 49sylibr 237 . . . 4 ((𝑥 ∈ (𝐴 + 𝐵) ∧ 𝑦 ∈ (𝐴 + 𝐵)) → (𝑥 + 𝑦) ∈ (𝐴 + 𝐵))
5150rgen2 3168 . . 3 𝑥 ∈ (𝐴 + 𝐵)∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 + 𝑦) ∈ (𝐴 + 𝐵)
52 shmulcl 29001 . . . . . . . . . . . . . 14 ((𝐴S𝑥 ∈ ℂ ∧ 𝑣𝐴) → (𝑥 · 𝑣) ∈ 𝐴)
531, 52mp3an1 1445 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑣𝐴) → (𝑥 · 𝑣) ∈ 𝐴)
5453adantrr 716 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑣) ∈ 𝐴)
55 shmulcl 29001 . . . . . . . . . . . . . . 15 ((𝐵S𝑥 ∈ ℂ ∧ 𝑢𝐵) → (𝑥 · 𝑢) ∈ 𝐵)
562, 55mp3an1 1445 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑢𝐵) → (𝑥 · 𝑢) ∈ 𝐵)
5756adantrr 716 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢))) → (𝑥 · 𝑢) ∈ 𝐵)
5857adantrl 715 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑢) ∈ 𝐵)
59 oveq2 7143 . . . . . . . . . . . . . . 15 (𝑦 = (𝑣 + 𝑢) → (𝑥 · 𝑦) = (𝑥 · (𝑣 + 𝑢)))
6059adantl 485 . . . . . . . . . . . . . 14 ((𝑢𝐵𝑦 = (𝑣 + 𝑢)) → (𝑥 · 𝑦) = (𝑥 · (𝑣 + 𝑢)))
6160ad2antll 728 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑦) = (𝑥 · (𝑣 + 𝑢)))
62 id 22 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
63 ax-hvdistr1 28791 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
6462, 30, 33, 63syl3an 1157 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑣𝐴𝑢𝐵) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
65643expb 1117 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝑣𝐴𝑢𝐵)) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
6665adantrrr 724 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
6761, 66eqtrd 2833 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑦) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
68 rspceov 7182 . . . . . . . . . . . 12 (((𝑥 · 𝑣) ∈ 𝐴 ∧ (𝑥 · 𝑢) ∈ 𝐵 ∧ (𝑥 · 𝑦) = ((𝑥 · 𝑣) + (𝑥 · 𝑢))) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
6954, 58, 67, 68syl3anc 1368 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7069ancoms 462 . . . . . . . . . 10 (((𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢))) ∧ 𝑥 ∈ ℂ) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7170exp42 439 . . . . . . . . 9 (𝑣𝐴 → (𝑢𝐵 → (𝑦 = (𝑣 + 𝑢) → (𝑥 ∈ ℂ → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔)))))
7271imp 410 . . . . . . . 8 ((𝑣𝐴𝑢𝐵) → (𝑦 = (𝑣 + 𝑢) → (𝑥 ∈ ℂ → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))))
7372rexlimivv 3251 . . . . . . 7 (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → (𝑥 ∈ ℂ → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔)))
7473impcom 411 . . . . . 6 ((𝑥 ∈ ℂ ∧ ∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢)) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7518, 74sylan2b 596 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (𝐴 + 𝐵)) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
761, 2shseli 29099 . . . . 5 ((𝑥 · 𝑦) ∈ (𝐴 + 𝐵) ↔ ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7775, 76sylibr 237 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (𝐴 + 𝐵)) → (𝑥 · 𝑦) ∈ (𝐴 + 𝐵))
7877rgen2 3168 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 · 𝑦) ∈ (𝐴 + 𝐵)
7951, 78pm3.2i 474 . 2 (∀𝑥 ∈ (𝐴 + 𝐵)∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 + 𝑦) ∈ (𝐴 + 𝐵) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 · 𝑦) ∈ (𝐴 + 𝐵))
80 issh2 28992 . 2 ((𝐴 + 𝐵) ∈ S ↔ (((𝐴 + 𝐵) ⊆ ℋ ∧ 0 ∈ (𝐴 + 𝐵)) ∧ (∀𝑥 ∈ (𝐴 + 𝐵)∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 + 𝑦) ∈ (𝐴 + 𝐵) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 · 𝑦) ∈ (𝐴 + 𝐵))))
8116, 79, 80mpbir2an 710 1 (𝐴 + 𝐵) ∈ S
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107  wss 3881  (class class class)co 7135  cc 10524  chba 28702   + cva 28703   · csm 28704  0c0v 28707   S csh 28711   + cph 28714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861  df-neg 10862  df-grpo 28276  df-ablo 28328  df-hvsub 28754  df-sh 28990  df-shs 29091
This theorem is referenced by:  shscl  29101  shsval2i  29170  shjshsi  29275  spanuni  29327  5oalem1  29437  5oalem3  29439  5oalem5  29441  5oalem6  29442  5oai  29444  3oalem2  29446  3oalem6  29450  mayete3i  29511  sumdmdlem  30201
  Copyright terms: Public domain W3C validator