HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shscli Structured version   Visualization version   GIF version

Theorem shscli 29264
Description: Closure of subspace sum. (Contributed by NM, 15-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
shscl.1 𝐴S
shscl.2 𝐵S
Assertion
Ref Expression
shscli (𝐴 + 𝐵) ∈ S

Proof of Theorem shscli
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑤 𝑔 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shscl.1 . . . 4 𝐴S
2 shscl.2 . . . 4 𝐵S
3 shsss 29260 . . . 4 ((𝐴S𝐵S ) → (𝐴 + 𝐵) ⊆ ℋ)
41, 2, 3mp2an 692 . . 3 (𝐴 + 𝐵) ⊆ ℋ
5 sh0 29163 . . . . . 6 (𝐴S → 0𝐴)
61, 5ax-mp 5 . . . . 5 0𝐴
7 sh0 29163 . . . . . 6 (𝐵S → 0𝐵)
82, 7ax-mp 5 . . . . 5 0𝐵
9 ax-hv0cl 28950 . . . . . . 7 0 ∈ ℋ
109hvaddid2i 28976 . . . . . 6 (0 + 0) = 0
1110eqcomi 2748 . . . . 5 0 = (0 + 0)
12 rspceov 7229 . . . . 5 ((0𝐴 ∧ 0𝐵 ∧ 0 = (0 + 0)) → ∃𝑥𝐴𝑦𝐵 0 = (𝑥 + 𝑦))
136, 8, 11, 12mp3an 1462 . . . 4 𝑥𝐴𝑦𝐵 0 = (𝑥 + 𝑦)
141, 2shseli 29263 . . . 4 (0 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 0 = (𝑥 + 𝑦))
1513, 14mpbir 234 . . 3 0 ∈ (𝐴 + 𝐵)
164, 15pm3.2i 474 . 2 ((𝐴 + 𝐵) ⊆ ℋ ∧ 0 ∈ (𝐴 + 𝐵))
171, 2shseli 29263 . . . . . 6 (𝑥 ∈ (𝐴 + 𝐵) ↔ ∃𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤))
181, 2shseli 29263 . . . . . 6 (𝑦 ∈ (𝐴 + 𝐵) ↔ ∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢))
19 shaddcl 29164 . . . . . . . . . . . . . . . 16 ((𝐴S𝑧𝐴𝑣𝐴) → (𝑧 + 𝑣) ∈ 𝐴)
201, 19mp3an1 1449 . . . . . . . . . . . . . . 15 ((𝑧𝐴𝑣𝐴) → (𝑧 + 𝑣) ∈ 𝐴)
2120ad2ant2r 747 . . . . . . . . . . . . . 14 (((𝑧𝐴𝑤𝐵) ∧ (𝑣𝐴𝑢𝐵)) → (𝑧 + 𝑣) ∈ 𝐴)
2221ad2ant2r 747 . . . . . . . . . . . . 13 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑧 + 𝑣) ∈ 𝐴)
23 shaddcl 29164 . . . . . . . . . . . . . . . 16 ((𝐵S𝑤𝐵𝑢𝐵) → (𝑤 + 𝑢) ∈ 𝐵)
242, 23mp3an1 1449 . . . . . . . . . . . . . . 15 ((𝑤𝐵𝑢𝐵) → (𝑤 + 𝑢) ∈ 𝐵)
2524ad2ant2l 746 . . . . . . . . . . . . . 14 (((𝑧𝐴𝑤𝐵) ∧ (𝑣𝐴𝑢𝐵)) → (𝑤 + 𝑢) ∈ 𝐵)
2625ad2ant2r 747 . . . . . . . . . . . . 13 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑤 + 𝑢) ∈ 𝐵)
27 oveq12 7191 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑧 + 𝑤) ∧ 𝑦 = (𝑣 + 𝑢)) → (𝑥 + 𝑦) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
2827ad2ant2l 746 . . . . . . . . . . . . . 14 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑥 + 𝑦) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
291sheli 29161 . . . . . . . . . . . . . . . . . 18 (𝑧𝐴𝑧 ∈ ℋ)
301sheli 29161 . . . . . . . . . . . . . . . . . 18 (𝑣𝐴𝑣 ∈ ℋ)
3129, 30anim12i 616 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴𝑣𝐴) → (𝑧 ∈ ℋ ∧ 𝑣 ∈ ℋ))
322sheli 29161 . . . . . . . . . . . . . . . . . 18 (𝑤𝐵𝑤 ∈ ℋ)
332sheli 29161 . . . . . . . . . . . . . . . . . 18 (𝑢𝐵𝑢 ∈ ℋ)
3432, 33anim12i 616 . . . . . . . . . . . . . . . . 17 ((𝑤𝐵𝑢𝐵) → (𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ))
35 hvadd4 28983 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℋ) ∧ (𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ)) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3631, 34, 35syl2an 599 . . . . . . . . . . . . . . . 16 (((𝑧𝐴𝑣𝐴) ∧ (𝑤𝐵𝑢𝐵)) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3736an4s 660 . . . . . . . . . . . . . . 15 (((𝑧𝐴𝑤𝐵) ∧ (𝑣𝐴𝑢𝐵)) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3837ad2ant2r 747 . . . . . . . . . . . . . 14 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3928, 38eqtr4d 2777 . . . . . . . . . . . . 13 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑥 + 𝑦) = ((𝑧 + 𝑣) + (𝑤 + 𝑢)))
40 rspceov 7229 . . . . . . . . . . . . 13 (((𝑧 + 𝑣) ∈ 𝐴 ∧ (𝑤 + 𝑢) ∈ 𝐵 ∧ (𝑥 + 𝑦) = ((𝑧 + 𝑣) + (𝑤 + 𝑢))) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4122, 26, 39, 40syl3anc 1372 . . . . . . . . . . . 12 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4241ancoms 462 . . . . . . . . . . 11 ((((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢)) ∧ ((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤))) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4342exp43 440 . . . . . . . . . 10 ((𝑣𝐴𝑢𝐵) → (𝑦 = (𝑣 + 𝑢) → ((𝑧𝐴𝑤𝐵) → (𝑥 = (𝑧 + 𝑤) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔)))))
4443rexlimivv 3203 . . . . . . . . 9 (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → ((𝑧𝐴𝑤𝐵) → (𝑥 = (𝑧 + 𝑤) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))))
4544com3l 89 . . . . . . . 8 ((𝑧𝐴𝑤𝐵) → (𝑥 = (𝑧 + 𝑤) → (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))))
4645rexlimivv 3203 . . . . . . 7 (∃𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤) → (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔)))
4746imp 410 . . . . . 6 ((∃𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤) ∧ ∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢)) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4817, 18, 47syl2anb 601 . . . . 5 ((𝑥 ∈ (𝐴 + 𝐵) ∧ 𝑦 ∈ (𝐴 + 𝐵)) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
491, 2shseli 29263 . . . . 5 ((𝑥 + 𝑦) ∈ (𝐴 + 𝐵) ↔ ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
5048, 49sylibr 237 . . . 4 ((𝑥 ∈ (𝐴 + 𝐵) ∧ 𝑦 ∈ (𝐴 + 𝐵)) → (𝑥 + 𝑦) ∈ (𝐴 + 𝐵))
5150rgen2 3116 . . 3 𝑥 ∈ (𝐴 + 𝐵)∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 + 𝑦) ∈ (𝐴 + 𝐵)
52 shmulcl 29165 . . . . . . . . . . . . . 14 ((𝐴S𝑥 ∈ ℂ ∧ 𝑣𝐴) → (𝑥 · 𝑣) ∈ 𝐴)
531, 52mp3an1 1449 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑣𝐴) → (𝑥 · 𝑣) ∈ 𝐴)
5453adantrr 717 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑣) ∈ 𝐴)
55 shmulcl 29165 . . . . . . . . . . . . . . 15 ((𝐵S𝑥 ∈ ℂ ∧ 𝑢𝐵) → (𝑥 · 𝑢) ∈ 𝐵)
562, 55mp3an1 1449 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑢𝐵) → (𝑥 · 𝑢) ∈ 𝐵)
5756adantrr 717 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢))) → (𝑥 · 𝑢) ∈ 𝐵)
5857adantrl 716 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑢) ∈ 𝐵)
59 oveq2 7190 . . . . . . . . . . . . . . 15 (𝑦 = (𝑣 + 𝑢) → (𝑥 · 𝑦) = (𝑥 · (𝑣 + 𝑢)))
6059adantl 485 . . . . . . . . . . . . . 14 ((𝑢𝐵𝑦 = (𝑣 + 𝑢)) → (𝑥 · 𝑦) = (𝑥 · (𝑣 + 𝑢)))
6160ad2antll 729 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑦) = (𝑥 · (𝑣 + 𝑢)))
62 id 22 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
63 ax-hvdistr1 28955 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
6462, 30, 33, 63syl3an 1161 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑣𝐴𝑢𝐵) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
65643expb 1121 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝑣𝐴𝑢𝐵)) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
6665adantrrr 725 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
6761, 66eqtrd 2774 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑦) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
68 rspceov 7229 . . . . . . . . . . . 12 (((𝑥 · 𝑣) ∈ 𝐴 ∧ (𝑥 · 𝑢) ∈ 𝐵 ∧ (𝑥 · 𝑦) = ((𝑥 · 𝑣) + (𝑥 · 𝑢))) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
6954, 58, 67, 68syl3anc 1372 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7069ancoms 462 . . . . . . . . . 10 (((𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢))) ∧ 𝑥 ∈ ℂ) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7170exp42 439 . . . . . . . . 9 (𝑣𝐴 → (𝑢𝐵 → (𝑦 = (𝑣 + 𝑢) → (𝑥 ∈ ℂ → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔)))))
7271imp 410 . . . . . . . 8 ((𝑣𝐴𝑢𝐵) → (𝑦 = (𝑣 + 𝑢) → (𝑥 ∈ ℂ → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))))
7372rexlimivv 3203 . . . . . . 7 (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → (𝑥 ∈ ℂ → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔)))
7473impcom 411 . . . . . 6 ((𝑥 ∈ ℂ ∧ ∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢)) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7518, 74sylan2b 597 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (𝐴 + 𝐵)) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
761, 2shseli 29263 . . . . 5 ((𝑥 · 𝑦) ∈ (𝐴 + 𝐵) ↔ ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7775, 76sylibr 237 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (𝐴 + 𝐵)) → (𝑥 · 𝑦) ∈ (𝐴 + 𝐵))
7877rgen2 3116 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 · 𝑦) ∈ (𝐴 + 𝐵)
7951, 78pm3.2i 474 . 2 (∀𝑥 ∈ (𝐴 + 𝐵)∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 + 𝑦) ∈ (𝐴 + 𝐵) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 · 𝑦) ∈ (𝐴 + 𝐵))
80 issh2 29156 . 2 ((𝐴 + 𝐵) ∈ S ↔ (((𝐴 + 𝐵) ⊆ ℋ ∧ 0 ∈ (𝐴 + 𝐵)) ∧ (∀𝑥 ∈ (𝐴 + 𝐵)∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 + 𝑦) ∈ (𝐴 + 𝐵) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 · 𝑦) ∈ (𝐴 + 𝐵))))
8116, 79, 80mpbir2an 711 1 (𝐴 + 𝐵) ∈ S
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wral 3054  wrex 3055  wss 3853  (class class class)co 7182  cc 10625  chba 28866   + cva 28867   · csm 28868  0c0v 28871   S csh 28875   + cph 28878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-hilex 28946  ax-hfvadd 28947  ax-hvcom 28948  ax-hvass 28949  ax-hv0cl 28950  ax-hvaddid 28951  ax-hfvmul 28952  ax-hvmulid 28953  ax-hvdistr1 28955  ax-hvdistr2 28956  ax-hvmul0 28957
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-po 5452  df-so 5453  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-er 8332  df-en 8568  df-dom 8569  df-sdom 8570  df-pnf 10767  df-mnf 10768  df-ltxr 10770  df-sub 10962  df-neg 10963  df-grpo 28440  df-ablo 28492  df-hvsub 28918  df-sh 29154  df-shs 29255
This theorem is referenced by:  shscl  29265  shsval2i  29334  shjshsi  29439  spanuni  29491  5oalem1  29601  5oalem3  29603  5oalem5  29605  5oalem6  29606  5oai  29608  3oalem2  29610  3oalem6  29614  mayete3i  29675  sumdmdlem  30365
  Copyright terms: Public domain W3C validator