Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvsubass | Structured version Visualization version GIF version |
Description: Hilbert vector space associative law for subtraction. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubass | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = (𝐴 −ℎ (𝐵 +ℎ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12017 | . . . 4 ⊢ -1 ∈ ℂ | |
2 | hvmulcl 29276 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ 𝐵) ∈ ℋ) | |
3 | 1, 2 | mpan 686 | . . 3 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ 𝐵) ∈ ℋ) |
4 | hvaddsubass 29304 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ 𝐶) = (𝐴 +ℎ ((-1 ·ℎ 𝐵) −ℎ 𝐶))) | |
5 | 3, 4 | syl3an2 1162 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ 𝐶) = (𝐴 +ℎ ((-1 ·ℎ 𝐵) −ℎ 𝐶))) |
6 | hvsubval 29279 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
7 | 6 | 3adant3 1130 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
8 | 7 | oveq1d 7270 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ 𝐶)) |
9 | simp1 1134 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → 𝐴 ∈ ℋ) | |
10 | hvaddcl 29275 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 +ℎ 𝐶) ∈ ℋ) | |
11 | 10 | 3adant1 1128 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 +ℎ 𝐶) ∈ ℋ) |
12 | hvsubval 29279 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 +ℎ 𝐶) ∈ ℋ) → (𝐴 −ℎ (𝐵 +ℎ 𝐶)) = (𝐴 +ℎ (-1 ·ℎ (𝐵 +ℎ 𝐶)))) | |
13 | 9, 11, 12 | syl2anc 583 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 −ℎ (𝐵 +ℎ 𝐶)) = (𝐴 +ℎ (-1 ·ℎ (𝐵 +ℎ 𝐶)))) |
14 | hvsubval 29279 | . . . . . . 7 ⊢ (((-1 ·ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) −ℎ 𝐶) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) | |
15 | 3, 14 | sylan 579 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) −ℎ 𝐶) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) |
16 | 15 | 3adant1 1128 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) −ℎ 𝐶) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) |
17 | ax-hvdistr1 29271 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 ·ℎ (𝐵 +ℎ 𝐶)) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) | |
18 | 1, 17 | mp3an1 1446 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 ·ℎ (𝐵 +ℎ 𝐶)) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) |
19 | 18 | 3adant1 1128 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 ·ℎ (𝐵 +ℎ 𝐶)) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) |
20 | 16, 19 | eqtr4d 2781 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) −ℎ 𝐶) = (-1 ·ℎ (𝐵 +ℎ 𝐶))) |
21 | 20 | oveq2d 7271 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ ((-1 ·ℎ 𝐵) −ℎ 𝐶)) = (𝐴 +ℎ (-1 ·ℎ (𝐵 +ℎ 𝐶)))) |
22 | 13, 21 | eqtr4d 2781 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 −ℎ (𝐵 +ℎ 𝐶)) = (𝐴 +ℎ ((-1 ·ℎ 𝐵) −ℎ 𝐶))) |
23 | 5, 8, 22 | 3eqtr4d 2788 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = (𝐴 −ℎ (𝐵 +ℎ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 -cneg 11136 ℋchba 29182 +ℎ cva 29183 ·ℎ csm 29184 −ℎ cmv 29188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-hfvadd 29263 ax-hvass 29265 ax-hfvmul 29268 ax-hvdistr1 29271 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 df-hvsub 29234 |
This theorem is referenced by: hvsub32 29308 hvsubassi 29318 pjhthlem1 29654 |
Copyright terms: Public domain | W3C validator |