HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubass Structured version   Visualization version   GIF version

Theorem hvsubass 28927
Description: Hilbert vector space associative law for subtraction. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubass ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) − 𝐶) = (𝐴 (𝐵 + 𝐶)))

Proof of Theorem hvsubass
StepHypRef Expression
1 neg1cn 11789 . . . 4 -1 ∈ ℂ
2 hvmulcl 28896 . . . 4 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 · 𝐵) ∈ ℋ)
31, 2mpan 690 . . 3 (𝐵 ∈ ℋ → (-1 · 𝐵) ∈ ℋ)
4 hvaddsubass 28924 . . 3 ((𝐴 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + (-1 · 𝐵)) − 𝐶) = (𝐴 + ((-1 · 𝐵) − 𝐶)))
53, 4syl3an2 1162 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + (-1 · 𝐵)) − 𝐶) = (𝐴 + ((-1 · 𝐵) − 𝐶)))
6 hvsubval 28899 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
763adant3 1130 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
87oveq1d 7166 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) − 𝐶) = ((𝐴 + (-1 · 𝐵)) − 𝐶))
9 simp1 1134 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → 𝐴 ∈ ℋ)
10 hvaddcl 28895 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 + 𝐶) ∈ ℋ)
11103adant1 1128 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 + 𝐶) ∈ ℋ)
12 hvsubval 28899 . . . 4 ((𝐴 ∈ ℋ ∧ (𝐵 + 𝐶) ∈ ℋ) → (𝐴 (𝐵 + 𝐶)) = (𝐴 + (-1 · (𝐵 + 𝐶))))
139, 11, 12syl2anc 588 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 (𝐵 + 𝐶)) = (𝐴 + (-1 · (𝐵 + 𝐶))))
14 hvsubval 28899 . . . . . . 7 (((-1 · 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) − 𝐶) = ((-1 · 𝐵) + (-1 · 𝐶)))
153, 14sylan 584 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) − 𝐶) = ((-1 · 𝐵) + (-1 · 𝐶)))
16153adant1 1128 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) − 𝐶) = ((-1 · 𝐵) + (-1 · 𝐶)))
17 ax-hvdistr1 28891 . . . . . . 7 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 · (𝐵 + 𝐶)) = ((-1 · 𝐵) + (-1 · 𝐶)))
181, 17mp3an1 1446 . . . . . 6 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 · (𝐵 + 𝐶)) = ((-1 · 𝐵) + (-1 · 𝐶)))
19183adant1 1128 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 · (𝐵 + 𝐶)) = ((-1 · 𝐵) + (-1 · 𝐶)))
2016, 19eqtr4d 2797 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) − 𝐶) = (-1 · (𝐵 + 𝐶)))
2120oveq2d 7167 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 + ((-1 · 𝐵) − 𝐶)) = (𝐴 + (-1 · (𝐵 + 𝐶))))
2213, 21eqtr4d 2797 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 (𝐵 + 𝐶)) = (𝐴 + ((-1 · 𝐵) − 𝐶)))
235, 8, 223eqtr4d 2804 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) − 𝐶) = (𝐴 (𝐵 + 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2112  (class class class)co 7151  cc 10574  1c1 10577  -cneg 10910  chba 28802   + cva 28803   · csm 28804   cmv 28808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-hfvadd 28883  ax-hvass 28885  ax-hfvmul 28888  ax-hvdistr1 28891
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-po 5444  df-so 5445  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-pnf 10716  df-mnf 10717  df-ltxr 10719  df-sub 10911  df-neg 10912  df-hvsub 28854
This theorem is referenced by:  hvsub32  28928  hvsubassi  28938  pjhthlem1  29274
  Copyright terms: Public domain W3C validator