Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvsubass | Structured version Visualization version GIF version |
Description: Hilbert vector space associative law for subtraction. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubass | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = (𝐴 −ℎ (𝐵 +ℎ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 11789 | . . . 4 ⊢ -1 ∈ ℂ | |
2 | hvmulcl 28896 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ 𝐵) ∈ ℋ) | |
3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ 𝐵) ∈ ℋ) |
4 | hvaddsubass 28924 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ 𝐶) = (𝐴 +ℎ ((-1 ·ℎ 𝐵) −ℎ 𝐶))) | |
5 | 3, 4 | syl3an2 1162 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ 𝐶) = (𝐴 +ℎ ((-1 ·ℎ 𝐵) −ℎ 𝐶))) |
6 | hvsubval 28899 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
7 | 6 | 3adant3 1130 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
8 | 7 | oveq1d 7166 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ 𝐶)) |
9 | simp1 1134 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → 𝐴 ∈ ℋ) | |
10 | hvaddcl 28895 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 +ℎ 𝐶) ∈ ℋ) | |
11 | 10 | 3adant1 1128 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 +ℎ 𝐶) ∈ ℋ) |
12 | hvsubval 28899 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 +ℎ 𝐶) ∈ ℋ) → (𝐴 −ℎ (𝐵 +ℎ 𝐶)) = (𝐴 +ℎ (-1 ·ℎ (𝐵 +ℎ 𝐶)))) | |
13 | 9, 11, 12 | syl2anc 588 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 −ℎ (𝐵 +ℎ 𝐶)) = (𝐴 +ℎ (-1 ·ℎ (𝐵 +ℎ 𝐶)))) |
14 | hvsubval 28899 | . . . . . . 7 ⊢ (((-1 ·ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) −ℎ 𝐶) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) | |
15 | 3, 14 | sylan 584 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) −ℎ 𝐶) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) |
16 | 15 | 3adant1 1128 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) −ℎ 𝐶) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) |
17 | ax-hvdistr1 28891 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 ·ℎ (𝐵 +ℎ 𝐶)) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) | |
18 | 1, 17 | mp3an1 1446 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 ·ℎ (𝐵 +ℎ 𝐶)) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) |
19 | 18 | 3adant1 1128 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 ·ℎ (𝐵 +ℎ 𝐶)) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) |
20 | 16, 19 | eqtr4d 2797 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) −ℎ 𝐶) = (-1 ·ℎ (𝐵 +ℎ 𝐶))) |
21 | 20 | oveq2d 7167 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ ((-1 ·ℎ 𝐵) −ℎ 𝐶)) = (𝐴 +ℎ (-1 ·ℎ (𝐵 +ℎ 𝐶)))) |
22 | 13, 21 | eqtr4d 2797 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 −ℎ (𝐵 +ℎ 𝐶)) = (𝐴 +ℎ ((-1 ·ℎ 𝐵) −ℎ 𝐶))) |
23 | 5, 8, 22 | 3eqtr4d 2804 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = (𝐴 −ℎ (𝐵 +ℎ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 (class class class)co 7151 ℂcc 10574 1c1 10577 -cneg 10910 ℋchba 28802 +ℎ cva 28803 ·ℎ csm 28804 −ℎ cmv 28808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-hfvadd 28883 ax-hvass 28885 ax-hfvmul 28888 ax-hvdistr1 28891 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-po 5444 df-so 5445 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-ltxr 10719 df-sub 10911 df-neg 10912 df-hvsub 28854 |
This theorem is referenced by: hvsub32 28928 hvsubassi 28938 pjhthlem1 29274 |
Copyright terms: Public domain | W3C validator |