Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axrepprim Structured version   Visualization version   GIF version

Theorem axrepprim 32825
Description: ax-rep 5181 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axrepprim ¬ ∀𝑥 ¬ (¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥)))

Proof of Theorem axrepprim
StepHypRef Expression
1 axrepnd 10004 . 2 𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)))
2 df-ex 1772 . . . . 5 (∃𝑦𝑧(𝜑𝑧 = 𝑦) ↔ ¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦))
3 df-an 397 . . . . . . . . . 10 ((∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑) ↔ ¬ (∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑))
43exbii 1839 . . . . . . . . 9 (∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑) ↔ ∃𝑥 ¬ (∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑))
5 exnal 1818 . . . . . . . . 9 (∃𝑥 ¬ (∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) ↔ ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑))
64, 5bitri 276 . . . . . . . 8 (∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑) ↔ ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑))
76bibi2i 339 . . . . . . 7 ((∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)) ↔ (∀𝑦 𝑧𝑥 ↔ ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)))
8 dfbi1 214 . . . . . . 7 ((∀𝑦 𝑧𝑥 ↔ ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) ↔ ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥)))
97, 8bitri 276 . . . . . 6 ((∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)) ↔ ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥)))
109albii 1811 . . . . 5 (∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)) ↔ ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥)))
112, 10imbi12i 352 . . . 4 ((∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))) ↔ (¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥))))
1211exbii 1839 . . 3 (∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))) ↔ ∃𝑥(¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥))))
13 df-ex 1772 . . 3 (∃𝑥(¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥))) ↔ ¬ ∀𝑥 ¬ (¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥))))
1412, 13bitri 276 . 2 (∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))) ↔ ¬ ∀𝑥 ¬ (¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥))))
151, 14mpbi 231 1 ¬ ∀𝑥 ¬ (¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wal 1526  wex 1771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-13 2381  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-reg 9044
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-v 3494  df-dif 3936  df-un 3938  df-nul 4289  df-sn 4558  df-pr 4560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator