| Step | Hyp | Ref
| Expression |
| 1 | | dfcleq 2727 |
. 2
⊢ ({𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} = 𝐴 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ↔ 𝑥 ∈ 𝐴)) |
| 2 | | df-in 3940 |
. . 3
⊢ (𝐴 ∩ 𝐵) = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
| 3 | 2 | eqeq1i 2739 |
. 2
⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} = 𝐴) |
| 4 | | df-ss 3950 |
. . 3
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 5 | | simp2 1137 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
| 6 | 5 | 3expib 1122 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴)) |
| 7 | | ancl 544 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 8 | 6, 7 | impbid 212 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐴)) |
| 9 | | dfbi2 474 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐴) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)))) |
| 10 | | pm2.21 123 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 11 | | pm3.4 809 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 12 | 10, 11 | ja 186 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 13 | 9, 12 | simplbiim 504 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 14 | 8, 13 | impbii 209 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐴)) |
| 15 | | df-clab 2713 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ↔ [𝑥 / 𝑦](𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
| 16 | | eleq1w 2816 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 17 | | eleq1w 2816 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) |
| 18 | 16, 17 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 19 | 18 | sbievw 2092 |
. . . . . . 7
⊢ ([𝑥 / 𝑦](𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 20 | 15, 19 | bitr2i 276 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)}) |
| 21 | 20 | bibi1i 338 |
. . . . 5
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ↔ 𝑥 ∈ 𝐴)) |
| 22 | 14, 21 | bitri 275 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ↔ 𝑥 ∈ 𝐴)) |
| 23 | 22 | albii 1818 |
. . 3
⊢
(∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ↔ 𝑥 ∈ 𝐴)) |
| 24 | 4, 23 | bitri 275 |
. 2
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ↔ 𝑥 ∈ 𝐴)) |
| 25 | 1, 3, 24 | 3bitr4ri 304 |
1
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |