Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfss2 | Structured version Visualization version GIF version |
Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.) Avoid ax-10 2139, ax-11 2156, ax-12 2173. (Revised by SN, 16-May-2024.) |
Ref | Expression |
---|---|
dfss2 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2731 | . 2 ⊢ (𝐴 = (𝐴 ∩ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) | |
2 | dfss 3901 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
3 | pm4.71 557 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
4 | elin 3899 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
5 | 4 | bibi2i 337 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
6 | 3, 5 | bitr4i 277 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
7 | 6 | albii 1823 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
8 | 1, 2, 7 | 3bitr4i 302 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: dfss3 3905 dfss6 3906 dfss2f 3907 ssel 3910 sselOLD 3911 ssriv 3921 ssrdv 3923 sstr2 3924 eqss 3932 nss 3979 rabss2 4007 ssconb 4068 ssequn1 4110 unss 4114 ssin 4161 ssdif0 4294 difin0ss 4299 inssdif0 4300 reldisj 4382 reldisjOLD 4383 ssundif 4415 sbcssg 4451 pwss 4555 snssg 4715 pwpw0 4743 pwsnOLD 4829 ssuni 4863 unissb 4870 iunssf 4970 iunss 4971 dftr2 5189 axpweq 5282 axpow2 5285 ssextss 5363 ssrel 5683 ssrel2 5685 ssrelrel 5695 reliun 5715 relop 5748 idrefALT 6007 funimass4 6816 dfom2 7689 inf2 9311 grothprim 10521 psslinpr 10718 ltaddpr 10721 isprm2 16315 vdwmc2 16608 acsmapd 18187 ismhp3 21243 dfconn2 22478 iskgen3 22608 metcld 24375 metcld2 24376 isch2 29486 pjnormssi 30431 ssiun3 30799 ssrelf 30856 bnj1361 32708 bnj978 32829 fineqvpow 32965 dffr5 33627 brsset 34118 sscoid 34142 relowlpssretop 35462 fvineqsneq 35510 rp-fakeinunass 41020 rababg 41070 ss2iundf 41156 dfhe3 41272 snhesn 41283 dffrege76 41436 ntrneiiso 41590 ntrneik2 41591 ntrneix2 41592 ntrneikb 41593 expanduniss 41800 ismnuprim 41801 ismnushort 41808 onfrALTlem2 42055 trsspwALT 42327 trsspwALT2 42328 snssiALTVD 42336 snssiALT 42337 sstrALT2VD 42343 sstrALT2 42344 sbcssgVD 42392 onfrALTlem2VD 42398 sspwimp 42427 sspwimpVD 42428 sspwimpcf 42429 sspwimpcfVD 42430 sspwimpALT 42434 unisnALT 42435 icccncfext 43318 |
Copyright terms: Public domain | W3C validator |