Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfss2 | Structured version Visualization version GIF version |
Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.) Avoid ax-10 2137, ax-11 2154, ax-12 2171. (Revised by SN, 16-May-2024.) |
Ref | Expression |
---|---|
dfss2 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2731 | . 2 ⊢ (𝐴 = (𝐴 ∩ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) | |
2 | dfss 3905 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
3 | pm4.71 558 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
4 | elin 3903 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
5 | 4 | bibi2i 338 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
6 | 3, 5 | bitr4i 277 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
7 | 6 | albii 1822 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
8 | 1, 2, 7 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: dfss3 3909 dfss6 3910 dfss2f 3911 ssel 3914 sselOLD 3915 ssriv 3925 ssrdv 3927 sstr2 3928 eqss 3936 nss 3983 rabss2 4011 ssconb 4072 ssequn1 4114 unss 4118 ssin 4164 ssdif0 4297 difin0ss 4302 inssdif0 4303 reldisj 4385 reldisjOLD 4386 ssundif 4418 sbcssg 4454 pwss 4558 snssg 4718 pwpw0 4746 pwsnOLD 4832 ssuni 4866 unissb 4873 iunssf 4974 iunss 4975 dftr2 5193 axpweq 5287 axpow2 5290 ssextss 5369 ssrel 5693 ssrelOLD 5694 ssrel2 5696 ssrelrel 5706 reliun 5726 relop 5759 idrefALT 6018 funimass4 6834 dfom2 7714 inf2 9381 grothprim 10590 psslinpr 10787 ltaddpr 10790 isprm2 16387 vdwmc2 16680 acsmapd 18272 ismhp3 21333 dfconn2 22570 iskgen3 22700 metcld 24470 metcld2 24471 isch2 29585 pjnormssi 30530 ssiun3 30898 ssrelf 30955 bnj1361 32808 bnj978 32929 fineqvpow 33065 dffr5 33721 brsset 34191 sscoid 34215 relowlpssretop 35535 fvineqsneq 35583 rp-fakeinunass 41122 rababg 41181 ss2iundf 41267 dfhe3 41383 snhesn 41394 dffrege76 41547 ntrneiiso 41701 ntrneik2 41702 ntrneix2 41703 ntrneikb 41704 expanduniss 41911 ismnuprim 41912 ismnushort 41919 onfrALTlem2 42166 trsspwALT 42438 trsspwALT2 42439 snssiALTVD 42447 snssiALT 42448 sstrALT2VD 42454 sstrALT2 42455 sbcssgVD 42503 onfrALTlem2VD 42509 sspwimp 42538 sspwimpVD 42539 sspwimpcf 42540 sspwimpcfVD 42541 sspwimpALT 42545 unisnALT 42546 icccncfext 43428 |
Copyright terms: Public domain | W3C validator |