Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfss2 | Structured version Visualization version GIF version |
Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.) Avoid ax-10 2136, ax-11 2153, ax-12 2170. (Revised by SN, 16-May-2024.) |
Ref | Expression |
---|---|
dfss2 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2729 | . 2 ⊢ (𝐴 = (𝐴 ∩ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) | |
2 | dfss 3916 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
3 | pm4.71 558 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
4 | elin 3914 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
5 | 4 | bibi2i 337 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
6 | 3, 5 | bitr4i 277 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
7 | 6 | albii 1820 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
8 | 1, 2, 7 | 3bitr4i 302 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1538 = wceq 1540 ∈ wcel 2105 ∩ cin 3897 ⊆ wss 3898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3905 df-ss 3915 |
This theorem is referenced by: dfss3 3920 dfss6 3921 dfss2f 3922 ssel 3925 sselOLD 3926 ssriv 3936 ssrdv 3938 sstr2 3939 eqss 3947 nss 3994 rabss2 4023 ssconb 4084 ssequn1 4127 unss 4131 ssin 4177 ssdif0 4310 difin0ss 4315 inssdif0 4316 reldisj 4398 reldisjOLD 4399 ssundif 4432 sbcssg 4468 pwss 4570 snssb 4730 snssgOLD 4732 pwpw0 4760 pwsnOLD 4845 ssuni 4880 unissb 4887 unissbOLD 4888 iunssf 4991 iunss 4992 dftr2 5211 axpweq 5307 axpow2 5310 ssextss 5398 ssrel 5724 ssrelOLD 5725 ssrel2 5727 ssrelrel 5738 reliun 5758 relop 5792 idrefALT 6051 funimass4 6890 dfom2 7782 inf2 9480 grothprim 10691 psslinpr 10888 ltaddpr 10891 isprm2 16484 vdwmc2 16777 acsmapd 18369 ismhp3 21439 dfconn2 22676 iskgen3 22806 metcld 24576 metcld2 24577 isch2 29873 pjnormssi 30818 ssiun3 31185 ssrelf 31242 bnj1361 33107 bnj978 33228 fineqvpow 33364 dffr5 34010 brsset 34287 sscoid 34311 relowlpssretop 35648 fvineqsneq 35696 rp-fakeinunass 41452 rababg 41511 dfhe3 41712 snhesn 41723 dffrege76 41876 ntrneiiso 42030 ntrneik2 42031 ntrneix2 42032 ntrneikb 42033 expanduniss 42240 ismnuprim 42241 ismnushort 42248 onfrALTlem2 42495 trsspwALT 42767 trsspwALT2 42768 snssiALTVD 42776 snssiALT 42777 sstrALT2VD 42783 sstrALT2 42784 sbcssgVD 42832 onfrALTlem2VD 42838 sspwimp 42867 sspwimpVD 42868 sspwimpcf 42869 sspwimpcfVD 42870 sspwimpALT 42874 unisnALT 42875 icccncfext 43772 |
Copyright terms: Public domain | W3C validator |