![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfss2 | Structured version Visualization version GIF version |
Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
dfss2 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss 3807 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
2 | df-in 3799 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
3 | 2 | eqeq2i 2790 | . . 3 ⊢ (𝐴 = (𝐴 ∩ 𝐵) ↔ 𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)}) |
4 | abeq2 2892 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
5 | 1, 3, 4 | 3bitri 289 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
6 | pm4.71 553 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
7 | 6 | albii 1863 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
8 | 5, 7 | bitr4i 270 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∀wal 1599 = wceq 1601 ∈ wcel 2107 {cab 2763 ∩ cin 3791 ⊆ wss 3792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-in 3799 df-ss 3806 |
This theorem is referenced by: dfss3 3810 dfss6 3811 dfss2f 3812 ssel 3815 ssriv 3825 ssrdv 3827 sstr2 3828 eqss 3836 nss 3882 rabss2 3906 ssconb 3966 ssequn1 4006 unss 4010 ssin 4055 ssdif0 4172 difin0ss 4177 inssdif0 4178 reldisj 4245 ssundif 4276 sbcssg 4306 pwss 4396 snssg 4548 pwpw0 4577 pwsnALT 4666 ssuni 4697 unissb 4706 iunss 4796 dftr2 4991 axpweq 5078 axpow2 5081 ssextss 5156 ssrel 5457 ssrel2 5459 ssrelrel 5469 reliun 5489 relop 5520 idrefALT 5765 idrefOLD 5766 funimass4 6509 dfom2 7347 inf2 8819 grothprim 9993 psslinpr 10190 ltaddpr 10193 isprm2 15804 vdwmc2 16091 acsmapd 17568 dfconn2 21635 iskgen3 21765 metcld 23516 metcld2 23517 isch2 28656 pjnormssi 29603 ssiun3 29942 ssrelf 29994 bnj1361 31502 bnj978 31622 dffr5 32241 brsset 32589 sscoid 32613 relowlpssretop 33810 rp-fakeinunass 38828 rababg 38846 ss2iundf 38918 dfhe3 39035 snhesn 39046 dffrege76 39199 ntrneiiso 39355 ntrneik2 39356 ntrneix2 39357 ntrneikb 39358 onfrALTlem2 39716 trsspwALT 39997 trsspwALT2 39998 snssiALTVD 40006 snssiALT 40007 sstrALT2VD 40013 sstrALT2 40014 sbcssgVD 40062 onfrALTlem2VD 40068 sspwimp 40097 sspwimpVD 40098 sspwimpcf 40099 sspwimpcfVD 40100 sspwimpALT 40104 unisnALT 40105 iunssf 40204 icccncfext 41038 |
Copyright terms: Public domain | W3C validator |