Step | Hyp | Ref
| Expression |
1 | | dfcleq 2733 |
. 2
⊢ ({𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} = 𝐴 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ↔ 𝑥 ∈ 𝐴)) |
2 | | df-in 3983 |
. . 3
⊢ (𝐴 ∩ 𝐵) = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
3 | 2 | eqeq1i 2745 |
. 2
⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} = 𝐴) |
4 | | df-ss 3993 |
. . 3
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
5 | | simp2 1137 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
6 | 5 | 3expib 1122 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴)) |
7 | | ancl 544 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
8 | 6, 7 | impbid 212 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐴)) |
9 | | dfbi2 474 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐴) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)))) |
10 | | pm2.21 123 |
. . . . . . . 8
⊢ (¬
𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
11 | | pm3.4 809 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
12 | 10, 11 | ja 186 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
13 | 9, 12 | simplbiim 504 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
14 | 8, 13 | impbii 209 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐴)) |
15 | | df-clab 2718 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ↔ [𝑥 / 𝑦](𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
16 | | eleq1w 2827 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
17 | | eleq1w 2827 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) |
18 | 16, 17 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
19 | 18 | sbievw 2093 |
. . . . . . 7
⊢ ([𝑥 / 𝑦](𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
20 | 15, 19 | bitr2i 276 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)}) |
21 | 20 | bibi1i 338 |
. . . . 5
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ↔ 𝑥 ∈ 𝐴)) |
22 | 14, 21 | bitri 275 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ↔ 𝑥 ∈ 𝐴)) |
23 | 22 | albii 1817 |
. . 3
⊢
(∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ↔ 𝑥 ∈ 𝐴)) |
24 | 4, 23 | bitri 275 |
. 2
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ↔ 𝑥 ∈ 𝐴)) |
25 | 1, 3, 24 | 3bitr4ri 304 |
1
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |