| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vpwex | Structured version Visualization version GIF version | ||
| Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5333 from vpwex 5332. (Revised by BJ, 10-Aug-2022.) |
| Ref | Expression |
|---|---|
| vpwex | ⊢ 𝒫 𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pw 4565 | . 2 ⊢ 𝒫 𝑥 = {𝑤 ∣ 𝑤 ⊆ 𝑥} | |
| 2 | axpow2 5322 | . . . . 5 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | |
| 3 | 2 | sepexi 5256 | . . . 4 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) |
| 4 | sseq1 3972 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝑤 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑥)) | |
| 5 | 4 | eqabbw 2802 | . . . . 5 ⊢ (𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
| 6 | 5 | exbii 1848 | . . . 4 ⊢ (∃𝑦 𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
| 7 | 3, 6 | mpbir 231 | . . 3 ⊢ ∃𝑦 𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} |
| 8 | 7 | issetri 3466 | . 2 ⊢ {𝑤 ∣ 𝑤 ⊆ 𝑥} ∈ V |
| 9 | 1, 8 | eqeltri 2824 | 1 ⊢ 𝒫 𝑥 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pow 5320 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: pwexg 5333 pwnex 7735 inf3lem7 9587 dfac8 10089 dfac13 10096 ackbij1lem8 10179 dominf 10398 numthcor 10447 dominfac 10526 intwun 10688 wunex2 10691 eltsk2g 10704 inttsk 10727 tskcard 10734 intgru 10767 gruina 10771 axgroth6 10781 ismre 17551 fnmre 17552 mreacs 17619 isacs5lem 18504 pmtrfval 19380 istopon 22799 dmtopon 22810 tgdom 22865 isfbas 23716 bj-snglex 36961 exrecfnpw 37369 pwinfi 43553 ntrrn 44111 ntrf 44112 dssmapntrcls 44117 vsetrec 49692 pgindnf 49705 |
| Copyright terms: Public domain | W3C validator |