MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vpwex Structured version   Visualization version   GIF version

Theorem vpwex 5347
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5348 from vpwex 5347. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex 𝒫 𝑥 ∈ V

Proof of Theorem vpwex
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 4577 . 2 𝒫 𝑥 = {𝑤𝑤𝑥}
2 axpow2 5337 . . . . 5 𝑦𝑧(𝑧𝑥𝑧𝑦)
32sepexi 5271 . . . 4 𝑦𝑧(𝑧𝑦𝑧𝑥)
4 sseq1 3984 . . . . . 6 (𝑤 = 𝑧 → (𝑤𝑥𝑧𝑥))
54eqabbw 2808 . . . . 5 (𝑦 = {𝑤𝑤𝑥} ↔ ∀𝑧(𝑧𝑦𝑧𝑥))
65exbii 1848 . . . 4 (∃𝑦 𝑦 = {𝑤𝑤𝑥} ↔ ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
73, 6mpbir 231 . . 3 𝑦 𝑦 = {𝑤𝑤𝑥}
87issetri 3478 . 2 {𝑤𝑤𝑥} ∈ V
91, 8eqeltri 2830 1 𝒫 𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2108  {cab 2713  Vcvv 3459  wss 3926  𝒫 cpw 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-pow 5335
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-ss 3943  df-pw 4577
This theorem is referenced by:  pwexg  5348  pwnex  7751  inf3lem7  9646  dfac8  10148  dfac13  10155  ackbij1lem8  10238  dominf  10457  numthcor  10506  dominfac  10585  intwun  10747  wunex2  10750  eltsk2g  10763  inttsk  10786  tskcard  10793  intgru  10826  gruina  10830  axgroth6  10840  ismre  17600  fnmre  17601  mreacs  17668  isacs5lem  18553  pmtrfval  19429  istopon  22848  dmtopon  22859  tgdom  22914  isfbas  23765  bj-snglex  36937  exrecfnpw  37345  pwinfi  43535  ntrrn  44093  ntrf  44094  dssmapntrcls  44099  vsetrec  49515  pgindnf  49528
  Copyright terms: Public domain W3C validator