MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vpwex Structured version   Visualization version   GIF version

Theorem vpwex 5295
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5296 from vpwex 5295. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex 𝒫 𝑥 ∈ V

Proof of Theorem vpwex
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 4532 . 2 𝒫 𝑥 = {𝑤𝑤𝑥}
2 axpow2 5285 . . . . 5 𝑦𝑧(𝑧𝑥𝑧𝑦)
32bm1.3ii 5221 . . . 4 𝑦𝑧(𝑧𝑦𝑧𝑥)
4 sseq1 3942 . . . . . 6 (𝑤 = 𝑧 → (𝑤𝑥𝑧𝑥))
54abeq2w 2816 . . . . 5 (𝑦 = {𝑤𝑤𝑥} ↔ ∀𝑧(𝑧𝑦𝑧𝑥))
65exbii 1851 . . . 4 (∃𝑦 𝑦 = {𝑤𝑤𝑥} ↔ ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
73, 6mpbir 230 . . 3 𝑦 𝑦 = {𝑤𝑤𝑥}
87issetri 3438 . 2 {𝑤𝑤𝑥} ∈ V
91, 8eqeltri 2835 1 𝒫 𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537   = wceq 1539  wex 1783  wcel 2108  {cab 2715  Vcvv 3422  wss 3883  𝒫 cpw 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532
This theorem is referenced by:  pwexg  5296  pwnex  7587  inf3lem7  9322  dfac8  9822  dfac13  9829  ackbij1lem8  9914  dominf  10132  numthcor  10181  dominfac  10260  intwun  10422  wunex2  10425  eltsk2g  10438  inttsk  10461  tskcard  10468  intgru  10501  gruina  10505  axgroth6  10515  ismre  17216  fnmre  17217  mreacs  17284  isacs5lem  18178  pmtrfval  18973  istopon  21969  dmtopon  21980  tgdom  22036  isfbas  22888  bj-snglex  35090  exrecfnpw  35479  pwinfi  41060  ntrrn  41621  ntrf  41622  dssmapntrcls  41627
  Copyright terms: Public domain W3C validator