Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vpwex | Structured version Visualization version GIF version |
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5296 from vpwex 5295. (Revised by BJ, 10-Aug-2022.) |
Ref | Expression |
---|---|
vpwex | ⊢ 𝒫 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw 4532 | . 2 ⊢ 𝒫 𝑥 = {𝑤 ∣ 𝑤 ⊆ 𝑥} | |
2 | axpow2 5285 | . . . . 5 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | |
3 | 2 | bm1.3ii 5221 | . . . 4 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) |
4 | sseq1 3942 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝑤 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑥)) | |
5 | 4 | abeq2w 2816 | . . . . 5 ⊢ (𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
6 | 5 | exbii 1851 | . . . 4 ⊢ (∃𝑦 𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
7 | 3, 6 | mpbir 230 | . . 3 ⊢ ∃𝑦 𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} |
8 | 7 | issetri 3438 | . 2 ⊢ {𝑤 ∣ 𝑤 ⊆ 𝑥} ∈ V |
9 | 1, 8 | eqeltri 2835 | 1 ⊢ 𝒫 𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-pow 5283 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: pwexg 5296 pwnex 7587 inf3lem7 9322 dfac8 9822 dfac13 9829 ackbij1lem8 9914 dominf 10132 numthcor 10181 dominfac 10260 intwun 10422 wunex2 10425 eltsk2g 10438 inttsk 10461 tskcard 10468 intgru 10501 gruina 10505 axgroth6 10515 ismre 17216 fnmre 17217 mreacs 17284 isacs5lem 18178 pmtrfval 18973 istopon 21969 dmtopon 21980 tgdom 22036 isfbas 22888 bj-snglex 35090 exrecfnpw 35479 pwinfi 41060 ntrrn 41621 ntrf 41622 dssmapntrcls 41627 |
Copyright terms: Public domain | W3C validator |