| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vpwex | Structured version Visualization version GIF version | ||
| Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5348 from vpwex 5347. (Revised by BJ, 10-Aug-2022.) |
| Ref | Expression |
|---|---|
| vpwex | ⊢ 𝒫 𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pw 4577 | . 2 ⊢ 𝒫 𝑥 = {𝑤 ∣ 𝑤 ⊆ 𝑥} | |
| 2 | axpow2 5337 | . . . . 5 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | |
| 3 | 2 | sepexi 5271 | . . . 4 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) |
| 4 | sseq1 3984 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝑤 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑥)) | |
| 5 | 4 | eqabbw 2808 | . . . . 5 ⊢ (𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
| 6 | 5 | exbii 1848 | . . . 4 ⊢ (∃𝑦 𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
| 7 | 3, 6 | mpbir 231 | . . 3 ⊢ ∃𝑦 𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} |
| 8 | 7 | issetri 3478 | . 2 ⊢ {𝑤 ∣ 𝑤 ⊆ 𝑥} ∈ V |
| 9 | 1, 8 | eqeltri 2830 | 1 ⊢ 𝒫 𝑥 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-pow 5335 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: pwexg 5348 pwnex 7751 inf3lem7 9646 dfac8 10148 dfac13 10155 ackbij1lem8 10238 dominf 10457 numthcor 10506 dominfac 10585 intwun 10747 wunex2 10750 eltsk2g 10763 inttsk 10786 tskcard 10793 intgru 10826 gruina 10830 axgroth6 10840 ismre 17600 fnmre 17601 mreacs 17668 isacs5lem 18553 pmtrfval 19429 istopon 22848 dmtopon 22859 tgdom 22914 isfbas 23765 bj-snglex 36937 exrecfnpw 37345 pwinfi 43535 ntrrn 44093 ntrf 44094 dssmapntrcls 44099 vsetrec 49515 pgindnf 49528 |
| Copyright terms: Public domain | W3C validator |