![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vpwex | Structured version Visualization version GIF version |
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5396 from vpwex 5395. (Revised by BJ, 10-Aug-2022.) |
Ref | Expression |
---|---|
vpwex | ⊢ 𝒫 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw 4624 | . 2 ⊢ 𝒫 𝑥 = {𝑤 ∣ 𝑤 ⊆ 𝑥} | |
2 | axpow2 5385 | . . . . 5 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | |
3 | 2 | bm1.3ii 5320 | . . . 4 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) |
4 | sseq1 4034 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝑤 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑥)) | |
5 | 4 | eqabbw 2818 | . . . . 5 ⊢ (𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
6 | 5 | exbii 1846 | . . . 4 ⊢ (∃𝑦 𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
7 | 3, 6 | mpbir 231 | . . 3 ⊢ ∃𝑦 𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} |
8 | 7 | issetri 3507 | . 2 ⊢ {𝑤 ∣ 𝑤 ⊆ 𝑥} ∈ V |
9 | 1, 8 | eqeltri 2840 | 1 ⊢ 𝒫 𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pow 5383 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-pw 4624 |
This theorem is referenced by: pwexg 5396 pwnex 7794 inf3lem7 9703 dfac8 10205 dfac13 10212 ackbij1lem8 10295 dominf 10514 numthcor 10563 dominfac 10642 intwun 10804 wunex2 10807 eltsk2g 10820 inttsk 10843 tskcard 10850 intgru 10883 gruina 10887 axgroth6 10897 ismre 17648 fnmre 17649 mreacs 17716 isacs5lem 18615 pmtrfval 19492 istopon 22939 dmtopon 22950 tgdom 23006 isfbas 23858 bj-snglex 36939 exrecfnpw 37347 pwinfi 43526 ntrrn 44084 ntrf 44085 dssmapntrcls 44090 vsetrec 48795 pgindnf 48808 |
Copyright terms: Public domain | W3C validator |