MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vpwex Structured version   Visualization version   GIF version

Theorem vpwex 5335
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5336 from vpwex 5335. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex 𝒫 𝑥 ∈ V

Proof of Theorem vpwex
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 4568 . 2 𝒫 𝑥 = {𝑤𝑤𝑥}
2 axpow2 5325 . . . . 5 𝑦𝑧(𝑧𝑥𝑧𝑦)
32sepexi 5259 . . . 4 𝑦𝑧(𝑧𝑦𝑧𝑥)
4 sseq1 3975 . . . . . 6 (𝑤 = 𝑧 → (𝑤𝑥𝑧𝑥))
54eqabbw 2803 . . . . 5 (𝑦 = {𝑤𝑤𝑥} ↔ ∀𝑧(𝑧𝑦𝑧𝑥))
65exbii 1848 . . . 4 (∃𝑦 𝑦 = {𝑤𝑤𝑥} ↔ ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
73, 6mpbir 231 . . 3 𝑦 𝑦 = {𝑤𝑤𝑥}
87issetri 3469 . 2 {𝑤𝑤𝑥} ∈ V
91, 8eqeltri 2825 1 𝒫 𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2708  Vcvv 3450  wss 3917  𝒫 cpw 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-pow 5323
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-ss 3934  df-pw 4568
This theorem is referenced by:  pwexg  5336  pwnex  7738  inf3lem7  9594  dfac8  10096  dfac13  10103  ackbij1lem8  10186  dominf  10405  numthcor  10454  dominfac  10533  intwun  10695  wunex2  10698  eltsk2g  10711  inttsk  10734  tskcard  10741  intgru  10774  gruina  10778  axgroth6  10788  ismre  17558  fnmre  17559  mreacs  17626  isacs5lem  18511  pmtrfval  19387  istopon  22806  dmtopon  22817  tgdom  22872  isfbas  23723  bj-snglex  36968  exrecfnpw  37376  pwinfi  43560  ntrrn  44118  ntrf  44119  dssmapntrcls  44124  vsetrec  49696  pgindnf  49709
  Copyright terms: Public domain W3C validator