Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vpwex | Structured version Visualization version GIF version |
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5301 from vpwex 5300. (Revised by BJ, 10-Aug-2022.) |
Ref | Expression |
---|---|
vpwex | ⊢ 𝒫 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw 4535 | . 2 ⊢ 𝒫 𝑥 = {𝑤 ∣ 𝑤 ⊆ 𝑥} | |
2 | axpow2 5290 | . . . . 5 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | |
3 | 2 | bm1.3ii 5226 | . . . 4 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) |
4 | sseq1 3946 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝑤 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑥)) | |
5 | 4 | abeq2w 2815 | . . . . 5 ⊢ (𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
6 | 5 | exbii 1850 | . . . 4 ⊢ (∃𝑦 𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
7 | 3, 6 | mpbir 230 | . . 3 ⊢ ∃𝑦 𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} |
8 | 7 | issetri 3448 | . 2 ⊢ {𝑤 ∣ 𝑤 ⊆ 𝑥} ∈ V |
9 | 1, 8 | eqeltri 2835 | 1 ⊢ 𝒫 𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-pow 5288 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 |
This theorem is referenced by: pwexg 5301 pwnex 7609 inf3lem7 9392 dfac8 9891 dfac13 9898 ackbij1lem8 9983 dominf 10201 numthcor 10250 dominfac 10329 intwun 10491 wunex2 10494 eltsk2g 10507 inttsk 10530 tskcard 10537 intgru 10570 gruina 10574 axgroth6 10584 ismre 17299 fnmre 17300 mreacs 17367 isacs5lem 18263 pmtrfval 19058 istopon 22061 dmtopon 22072 tgdom 22128 isfbas 22980 bj-snglex 35163 exrecfnpw 35552 pwinfi 41171 ntrrn 41732 ntrf 41733 dssmapntrcls 41738 |
Copyright terms: Public domain | W3C validator |