MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vpwex Structured version   Visualization version   GIF version

Theorem vpwex 5395
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5396 from vpwex 5395. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex 𝒫 𝑥 ∈ V

Proof of Theorem vpwex
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 4624 . 2 𝒫 𝑥 = {𝑤𝑤𝑥}
2 axpow2 5385 . . . . 5 𝑦𝑧(𝑧𝑥𝑧𝑦)
32bm1.3ii 5320 . . . 4 𝑦𝑧(𝑧𝑦𝑧𝑥)
4 sseq1 4034 . . . . . 6 (𝑤 = 𝑧 → (𝑤𝑥𝑧𝑥))
54eqabbw 2818 . . . . 5 (𝑦 = {𝑤𝑤𝑥} ↔ ∀𝑧(𝑧𝑦𝑧𝑥))
65exbii 1846 . . . 4 (∃𝑦 𝑦 = {𝑤𝑤𝑥} ↔ ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
73, 6mpbir 231 . . 3 𝑦 𝑦 = {𝑤𝑤𝑥}
87issetri 3507 . 2 {𝑤𝑤𝑥} ∈ V
91, 8eqeltri 2840 1 𝒫 𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535   = wceq 1537  wex 1777  wcel 2108  {cab 2717  Vcvv 3488  wss 3976  𝒫 cpw 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-pow 5383
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-pw 4624
This theorem is referenced by:  pwexg  5396  pwnex  7794  inf3lem7  9703  dfac8  10205  dfac13  10212  ackbij1lem8  10295  dominf  10514  numthcor  10563  dominfac  10642  intwun  10804  wunex2  10807  eltsk2g  10820  inttsk  10843  tskcard  10850  intgru  10883  gruina  10887  axgroth6  10897  ismre  17648  fnmre  17649  mreacs  17716  isacs5lem  18615  pmtrfval  19492  istopon  22939  dmtopon  22950  tgdom  23006  isfbas  23858  bj-snglex  36939  exrecfnpw  37347  pwinfi  43526  ntrrn  44084  ntrf  44085  dssmapntrcls  44090  vsetrec  48795  pgindnf  48808
  Copyright terms: Public domain W3C validator