![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vpwex | Structured version Visualization version GIF version |
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5377 from vpwex 5376. (Revised by BJ, 10-Aug-2022.) |
Ref | Expression |
---|---|
vpwex | ⊢ 𝒫 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw 4605 | . 2 ⊢ 𝒫 𝑥 = {𝑤 ∣ 𝑤 ⊆ 𝑥} | |
2 | axpow2 5366 | . . . . 5 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | |
3 | 2 | bm1.3ii 5303 | . . . 4 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) |
4 | sseq1 4008 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝑤 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑥)) | |
5 | 4 | eqabbw 2810 | . . . . 5 ⊢ (𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
6 | 5 | exbii 1851 | . . . 4 ⊢ (∃𝑦 𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
7 | 3, 6 | mpbir 230 | . . 3 ⊢ ∃𝑦 𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} |
8 | 7 | issetri 3491 | . 2 ⊢ {𝑤 ∣ 𝑤 ⊆ 𝑥} ∈ V |
9 | 1, 8 | eqeltri 2830 | 1 ⊢ 𝒫 𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1540 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 Vcvv 3475 ⊆ wss 3949 𝒫 cpw 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-pow 5364 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-pw 4605 |
This theorem is referenced by: pwexg 5377 pwnex 7746 inf3lem7 9629 dfac8 10130 dfac13 10137 ackbij1lem8 10222 dominf 10440 numthcor 10489 dominfac 10568 intwun 10730 wunex2 10733 eltsk2g 10746 inttsk 10769 tskcard 10776 intgru 10809 gruina 10813 axgroth6 10823 ismre 17534 fnmre 17535 mreacs 17602 isacs5lem 18498 pmtrfval 19318 istopon 22414 dmtopon 22425 tgdom 22481 isfbas 23333 bj-snglex 35854 exrecfnpw 36262 pwinfi 42315 ntrrn 42873 ntrf 42874 dssmapntrcls 42879 vsetrec 47748 pgindnf 47761 |
Copyright terms: Public domain | W3C validator |