![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vpwex | Structured version Visualization version GIF version |
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5080 from vpwex 5079. (Revised by BJ, 10-Aug-2022.) |
Ref | Expression |
---|---|
vpwex | ⊢ 𝒫 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw 4382 | . 2 ⊢ 𝒫 𝑥 = {𝑦 ∣ 𝑦 ⊆ 𝑥} | |
2 | axpow2 5069 | . . . . 5 ⊢ ∃𝑧∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑧) | |
3 | 2 | bm1.3ii 5010 | . . . 4 ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ⊆ 𝑥) |
4 | abeq2 2937 | . . . . 5 ⊢ (𝑧 = {𝑦 ∣ 𝑦 ⊆ 𝑥} ↔ ∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ⊆ 𝑥)) | |
5 | 4 | exbii 1947 | . . . 4 ⊢ (∃𝑧 𝑧 = {𝑦 ∣ 𝑦 ⊆ 𝑥} ↔ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ⊆ 𝑥)) |
6 | 3, 5 | mpbir 223 | . . 3 ⊢ ∃𝑧 𝑧 = {𝑦 ∣ 𝑦 ⊆ 𝑥} |
7 | 6 | issetri 3427 | . 2 ⊢ {𝑦 ∣ 𝑦 ⊆ 𝑥} ∈ V |
8 | 1, 7 | eqeltri 2902 | 1 ⊢ 𝒫 𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∀wal 1654 = wceq 1656 ∃wex 1878 ∈ wcel 2164 {cab 2811 Vcvv 3414 ⊆ wss 3798 𝒫 cpw 4380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 ax-sep 5007 ax-pow 5067 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-v 3416 df-in 3805 df-ss 3812 df-pw 4382 |
This theorem is referenced by: pwexg 5080 pwnex 7233 inf3lem7 8815 dfac8 9279 dfac13 9286 ackbij1lem8 9371 dominf 9589 numthcor 9638 dominfac 9717 intwun 9879 wunex2 9882 eltsk2g 9895 inttsk 9918 tskcard 9925 intgru 9958 gruina 9962 axgroth6 9972 ismre 16610 fnmre 16611 mreacs 16678 isacs5lem 17529 pmtrfval 18227 istopon 21094 dmtopon 21105 tgdom 21160 isfbas 22010 bj-snglex 33478 pwinfi 38705 ntrrn 39255 ntrf 39256 dssmapntrcls 39261 |
Copyright terms: Public domain | W3C validator |