MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vpwex Structured version   Visualization version   GIF version

Theorem vpwex 5332
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5333 from vpwex 5332. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex 𝒫 𝑥 ∈ V

Proof of Theorem vpwex
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 4565 . 2 𝒫 𝑥 = {𝑤𝑤𝑥}
2 axpow2 5322 . . . . 5 𝑦𝑧(𝑧𝑥𝑧𝑦)
32sepexi 5256 . . . 4 𝑦𝑧(𝑧𝑦𝑧𝑥)
4 sseq1 3972 . . . . . 6 (𝑤 = 𝑧 → (𝑤𝑥𝑧𝑥))
54eqabbw 2802 . . . . 5 (𝑦 = {𝑤𝑤𝑥} ↔ ∀𝑧(𝑧𝑦𝑧𝑥))
65exbii 1848 . . . 4 (∃𝑦 𝑦 = {𝑤𝑤𝑥} ↔ ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
73, 6mpbir 231 . . 3 𝑦 𝑦 = {𝑤𝑤𝑥}
87issetri 3466 . 2 {𝑤𝑤𝑥} ∈ V
91, 8eqeltri 2824 1 𝒫 𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2707  Vcvv 3447  wss 3914  𝒫 cpw 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-pow 5320
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-ss 3931  df-pw 4565
This theorem is referenced by:  pwexg  5333  pwnex  7735  inf3lem7  9587  dfac8  10089  dfac13  10096  ackbij1lem8  10179  dominf  10398  numthcor  10447  dominfac  10526  intwun  10688  wunex2  10691  eltsk2g  10704  inttsk  10727  tskcard  10734  intgru  10767  gruina  10771  axgroth6  10781  ismre  17551  fnmre  17552  mreacs  17619  isacs5lem  18504  pmtrfval  19380  istopon  22799  dmtopon  22810  tgdom  22865  isfbas  23716  bj-snglex  36961  exrecfnpw  37369  pwinfi  43553  ntrrn  44111  ntrf  44112  dssmapntrcls  44117  vsetrec  49692  pgindnf  49705
  Copyright terms: Public domain W3C validator