| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vpwex | Structured version Visualization version GIF version | ||
| Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5317 from vpwex 5316. (Revised by BJ, 10-Aug-2022.) |
| Ref | Expression |
|---|---|
| vpwex | ⊢ 𝒫 𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pw 4553 | . 2 ⊢ 𝒫 𝑥 = {𝑤 ∣ 𝑤 ⊆ 𝑥} | |
| 2 | axpow2 5306 | . . . . 5 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | |
| 3 | 2 | sepexi 5240 | . . . 4 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) |
| 4 | sseq1 3961 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝑤 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑥)) | |
| 5 | 4 | eqabbw 2802 | . . . . 5 ⊢ (𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
| 6 | 5 | exbii 1848 | . . . 4 ⊢ (∃𝑦 𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
| 7 | 3, 6 | mpbir 231 | . . 3 ⊢ ∃𝑦 𝑦 = {𝑤 ∣ 𝑤 ⊆ 𝑥} |
| 8 | 7 | issetri 3455 | . 2 ⊢ {𝑤 ∣ 𝑤 ⊆ 𝑥} ∈ V |
| 9 | 1, 8 | eqeltri 2824 | 1 ⊢ 𝒫 𝑥 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 Vcvv 3436 ⊆ wss 3903 𝒫 cpw 4551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-pow 5304 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-pw 4553 |
| This theorem is referenced by: pwexg 5317 pwnex 7695 inf3lem7 9530 dfac8 10030 dfac13 10037 ackbij1lem8 10120 dominf 10339 numthcor 10388 dominfac 10467 intwun 10629 wunex2 10632 eltsk2g 10645 inttsk 10668 tskcard 10675 intgru 10708 gruina 10712 axgroth6 10722 ismre 17492 fnmre 17493 mreacs 17564 isacs5lem 18451 pmtrfval 19329 istopon 22797 dmtopon 22808 tgdom 22863 isfbas 23714 bj-snglex 36957 exrecfnpw 37365 pwinfi 43547 ntrrn 44105 ntrf 44106 dssmapntrcls 44111 vsetrec 49698 pgindnf 49711 |
| Copyright terms: Public domain | W3C validator |