MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vpwex Structured version   Visualization version   GIF version

Theorem vpwex 5376
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5377 from vpwex 5376. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex 𝒫 𝑥 ∈ V

Proof of Theorem vpwex
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 4605 . 2 𝒫 𝑥 = {𝑤𝑤𝑥}
2 axpow2 5366 . . . . 5 𝑦𝑧(𝑧𝑥𝑧𝑦)
32bm1.3ii 5303 . . . 4 𝑦𝑧(𝑧𝑦𝑧𝑥)
4 sseq1 4008 . . . . . 6 (𝑤 = 𝑧 → (𝑤𝑥𝑧𝑥))
54eqabbw 2810 . . . . 5 (𝑦 = {𝑤𝑤𝑥} ↔ ∀𝑧(𝑧𝑦𝑧𝑥))
65exbii 1851 . . . 4 (∃𝑦 𝑦 = {𝑤𝑤𝑥} ↔ ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
73, 6mpbir 230 . . 3 𝑦 𝑦 = {𝑤𝑤𝑥}
87issetri 3491 . 2 {𝑤𝑤𝑥} ∈ V
91, 8eqeltri 2830 1 𝒫 𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1540   = wceq 1542  wex 1782  wcel 2107  {cab 2710  Vcvv 3475  wss 3949  𝒫 cpw 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-pow 5364
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966  df-pw 4605
This theorem is referenced by:  pwexg  5377  pwnex  7746  inf3lem7  9629  dfac8  10130  dfac13  10137  ackbij1lem8  10222  dominf  10440  numthcor  10489  dominfac  10568  intwun  10730  wunex2  10733  eltsk2g  10746  inttsk  10769  tskcard  10776  intgru  10809  gruina  10813  axgroth6  10823  ismre  17534  fnmre  17535  mreacs  17602  isacs5lem  18498  pmtrfval  19318  istopon  22414  dmtopon  22425  tgdom  22481  isfbas  23333  bj-snglex  35854  exrecfnpw  36262  pwinfi  42315  ntrrn  42873  ntrf  42874  dssmapntrcls  42879  vsetrec  47748  pgindnf  47761
  Copyright terms: Public domain W3C validator