MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vpwex Structured version   Visualization version   GIF version

Theorem vpwex 5313
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5314 from vpwex 5313. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex 𝒫 𝑥 ∈ V

Proof of Theorem vpwex
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 4549 . 2 𝒫 𝑥 = {𝑤𝑤𝑥}
2 axpow2 5303 . . . . 5 𝑦𝑧(𝑧𝑥𝑧𝑦)
32sepexi 5237 . . . 4 𝑦𝑧(𝑧𝑦𝑧𝑥)
4 sseq1 3955 . . . . . 6 (𝑤 = 𝑧 → (𝑤𝑥𝑧𝑥))
54eqabbw 2804 . . . . 5 (𝑦 = {𝑤𝑤𝑥} ↔ ∀𝑧(𝑧𝑦𝑧𝑥))
65exbii 1849 . . . 4 (∃𝑦 𝑦 = {𝑤𝑤𝑥} ↔ ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
73, 6mpbir 231 . . 3 𝑦 𝑦 = {𝑤𝑤𝑥}
87issetri 3455 . 2 {𝑤𝑤𝑥} ∈ V
91, 8eqeltri 2827 1 𝒫 𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1539   = wceq 1541  wex 1780  wcel 2111  {cab 2709  Vcvv 3436  wss 3897  𝒫 cpw 4547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-pow 5301
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-pw 4549
This theorem is referenced by:  pwexg  5314  pwnex  7692  inf3lem7  9524  dfac8  10027  dfac13  10034  ackbij1lem8  10117  dominf  10336  numthcor  10385  dominfac  10464  intwun  10626  wunex2  10629  eltsk2g  10642  inttsk  10665  tskcard  10672  intgru  10705  gruina  10709  axgroth6  10719  ismre  17492  fnmre  17493  mreacs  17564  isacs5lem  18451  pmtrfval  19362  istopon  22827  dmtopon  22838  tgdom  22893  isfbas  23744  bj-snglex  37017  exrecfnpw  37425  pwinfi  43667  ntrrn  44225  ntrf  44226  dssmapntrcls  44231  vsetrec  49814  pgindnf  49827
  Copyright terms: Public domain W3C validator