MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vpwex Structured version   Visualization version   GIF version

Theorem vpwex 5241
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 5242 from vpwex 5241. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex 𝒫 𝑥 ∈ V

Proof of Theorem vpwex
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 4487 . 2 𝒫 𝑥 = {𝑤𝑤𝑥}
2 axpow2 5231 . . . . 5 𝑦𝑧(𝑧𝑥𝑧𝑦)
32bm1.3ii 5167 . . . 4 𝑦𝑧(𝑧𝑦𝑧𝑥)
4 sseq1 3900 . . . . . 6 (𝑤 = 𝑧 → (𝑤𝑥𝑧𝑥))
54abeq2w 2810 . . . . 5 (𝑦 = {𝑤𝑤𝑥} ↔ ∀𝑧(𝑧𝑦𝑧𝑥))
65exbii 1854 . . . 4 (∃𝑦 𝑦 = {𝑤𝑤𝑥} ↔ ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
73, 6mpbir 234 . . 3 𝑦 𝑦 = {𝑤𝑤𝑥}
87issetri 3413 . 2 {𝑤𝑤𝑥} ∈ V
91, 8eqeltri 2829 1 𝒫 𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wb 209  wal 1540   = wceq 1542  wex 1786  wcel 2113  {cab 2716  Vcvv 3397  wss 3841  𝒫 cpw 4485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-ext 2710  ax-sep 5164  ax-pow 5229
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3399  df-in 3848  df-ss 3858  df-pw 4487
This theorem is referenced by:  pwexg  5242  pwnex  7494  inf3lem7  9163  dfac8  9628  dfac13  9635  ackbij1lem8  9720  dominf  9938  numthcor  9987  dominfac  10066  intwun  10228  wunex2  10231  eltsk2g  10244  inttsk  10267  tskcard  10274  intgru  10307  gruina  10311  axgroth6  10321  ismre  16957  fnmre  16958  mreacs  17025  isacs5lem  17888  pmtrfval  18689  istopon  21656  dmtopon  21667  tgdom  21722  isfbas  22573  bj-snglex  34775  exrecfnpw  35164  pwinfi  40700  ntrrn  41262  ntrf  41263  dssmapntrcls  41268
  Copyright terms: Public domain W3C validator