| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disj1 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| disj1 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj 4403 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | |
| 2 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3904 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-dif 3908 df-in 3912 df-nul 4287 |
| This theorem is referenced by: reldisj 4406 disj3 4407 undif4 4420 disjsn 4665 funun 6532 zfregs2 9648 dfac5lem4 10039 dfac5lem4OLD 10041 isf32lem9 10274 fzodisj 13614 fzodisjsn 13618 inpr0 32494 bnj1280 34989 axregszf 35066 ecin0 38322 zfregs2VD 44817 dfac5prim 44967 permac8prim 44991 |
| Copyright terms: Public domain | W3C validator |