MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disj1 Structured version   Visualization version   GIF version

Theorem disj1 4397
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
disj1 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disj1
StepHypRef Expression
1 disj 4395 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
2 df-ral 3048 . 2 (∀𝑥𝐴 ¬ 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
31, 2bitri 275 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1539   = wceq 1541  wcel 2111  wral 3047  cin 3896  c0 4278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-dif 3900  df-in 3904  df-nul 4279
This theorem is referenced by:  reldisj  4398  disj3  4399  undif4  4412  disjsn  4659  funun  6522  zfregs2  9618  dfac5lem4  10012  dfac5lem4OLD  10014  isf32lem9  10247  fzodisj  13588  fzodisjsn  13592  inpr0  32504  bnj1280  35024  axregszf  35119  ecin0  38380  zfregs2VD  44873  dfac5prim  45023  permac8prim  45047
  Copyright terms: Public domain W3C validator