| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disj1 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| disj1 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj 4399 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | |
| 2 | df-ral 3049 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∩ cin 3897 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-dif 3901 df-in 3905 df-nul 4283 |
| This theorem is referenced by: reldisj 4402 disj3 4403 undif4 4416 disjsn 4665 funun 6535 zfregs2 9634 dfac5lem4 10028 dfac5lem4OLD 10030 isf32lem9 10263 fzodisj 13600 fzodisjsn 13604 inpr0 32533 bnj1280 35104 axregszf 35199 ecin0 38457 zfregs2VD 44997 dfac5prim 45147 permac8prim 45171 |
| Copyright terms: Public domain | W3C validator |