![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disj1 | Structured version Visualization version GIF version |
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
disj1 | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj 4240 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | |
2 | df-ral 3121 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | bitri 267 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∀wal 1656 = wceq 1658 ∈ wcel 2166 ∀wral 3116 ∩ cin 3796 ∅c0 4143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2802 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ral 3121 df-v 3415 df-dif 3800 df-in 3804 df-nul 4144 |
This theorem is referenced by: reldisj 4243 disj3 4244 undif4 4257 disjsn 4464 funun 6167 zfregs2 8885 dfac5lem4 9261 isf32lem9 9497 fzodisj 12796 fzodisjsn 12800 bnj1280 31633 ecin0 34664 zfregs2VD 39894 |
Copyright terms: Public domain | W3C validator |