MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfregs Structured version   Visualization version   GIF version

Theorem zfregs 9628
Description: The strong form of the Axiom of Regularity, which does not require that 𝐴 be a set. Axiom 6' of [TakeutiZaring] p. 21. See also epfrs 9627. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
zfregs (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝑥𝐴) = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem zfregs
StepHypRef Expression
1 zfregfr 9500 . 2 E Fr 𝐴
2 epfrs 9627 . 2 (( E Fr 𝐴𝐴 ≠ ∅) → ∃𝑥𝐴 (𝑥𝐴) = ∅)
31, 2mpan 690 1 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝑥𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2925  wrex 3053  cin 3902  c0 4284   E cep 5518   Fr wfr 5569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332
This theorem is referenced by:  zfregs2  9629  setind  9630  zfregs2VD  44814
  Copyright terms: Public domain W3C validator