![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-csbsn | Structured version Visualization version GIF version |
Description: Substitution in a singleton. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-csbsn | ⊢ ⦋𝐴 / 𝑥⦌{𝑥} = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-csbsnlem 33419 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌{𝑥} = {𝑦} | |
2 | 1 | csbeq2i 4217 | . 2 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌{𝑥} = ⦋𝐴 / 𝑦⦌{𝑦} |
3 | csbco 3767 | . 2 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌{𝑥} = ⦋𝐴 / 𝑥⦌{𝑥} | |
4 | bj-csbsnlem 33419 | . 2 ⊢ ⦋𝐴 / 𝑦⦌{𝑦} = {𝐴} | |
5 | 2, 3, 4 | 3eqtr3i 2857 | 1 ⊢ ⦋𝐴 / 𝑥⦌{𝑥} = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ⦋csb 3757 {csn 4397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-sbc 3663 df-csb 3758 df-sn 4398 |
This theorem is referenced by: bj-snsetex 33473 |
Copyright terms: Public domain | W3C validator |