Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-csbsn Structured version   Visualization version   GIF version

Theorem bj-csbsn 33420
Description: Substitution in a singleton. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-csbsn 𝐴 / 𝑥{𝑥} = {𝐴}

Proof of Theorem bj-csbsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bj-csbsnlem 33419 . . 3 𝑦 / 𝑥{𝑥} = {𝑦}
21csbeq2i 4217 . 2 𝐴 / 𝑦𝑦 / 𝑥{𝑥} = 𝐴 / 𝑦{𝑦}
3 csbco 3767 . 2 𝐴 / 𝑦𝑦 / 𝑥{𝑥} = 𝐴 / 𝑥{𝑥}
4 bj-csbsnlem 33419 . 2 𝐴 / 𝑦{𝑦} = {𝐴}
52, 3, 43eqtr3i 2857 1 𝐴 / 𝑥{𝑥} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  csb 3757  {csn 4397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-v 3416  df-sbc 3663  df-csb 3758  df-sn 4398
This theorem is referenced by:  bj-snsetex  33473
  Copyright terms: Public domain W3C validator