![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-csbsn | Structured version Visualization version GIF version |
Description: Substitution in a singleton. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-csbsn | ⊢ ⦋𝐴 / 𝑥⦌{𝑥} = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-csbsnlem 36087 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌{𝑥} = {𝑦} | |
2 | 1 | csbeq2i 3901 | . 2 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌{𝑥} = ⦋𝐴 / 𝑦⦌{𝑦} |
3 | csbcow 3908 | . 2 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌{𝑥} = ⦋𝐴 / 𝑥⦌{𝑥} | |
4 | bj-csbsnlem 36087 | . 2 ⊢ ⦋𝐴 / 𝑦⦌{𝑦} = {𝐴} | |
5 | 2, 3, 4 | 3eqtr3i 2767 | 1 ⊢ ⦋𝐴 / 𝑥⦌{𝑥} = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ⦋csb 3893 {csn 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-sbc 3778 df-csb 3894 df-sn 4629 |
This theorem is referenced by: bj-snsetex 36148 |
Copyright terms: Public domain | W3C validator |