Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-csbsn Structured version   Visualization version   GIF version

Theorem bj-csbsn 36971
Description: Substitution in a singleton. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-csbsn 𝐴 / 𝑥{𝑥} = {𝐴}

Proof of Theorem bj-csbsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bj-csbsnlem 36970 . . 3 𝑦 / 𝑥{𝑥} = {𝑦}
21csbeq2i 3854 . 2 𝐴 / 𝑦𝑦 / 𝑥{𝑥} = 𝐴 / 𝑦{𝑦}
3 csbcow 3861 . 2 𝐴 / 𝑦𝑦 / 𝑥{𝑥} = 𝐴 / 𝑥{𝑥}
4 bj-csbsnlem 36970 . 2 𝐴 / 𝑦{𝑦} = {𝐴}
52, 3, 43eqtr3i 2764 1 𝐴 / 𝑥{𝑥} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  csb 3846  {csn 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-sbc 3738  df-csb 3847  df-sn 4578
This theorem is referenced by:  bj-snsetex  37030
  Copyright terms: Public domain W3C validator