| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-csbsn | Structured version Visualization version GIF version | ||
| Description: Substitution in a singleton. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-csbsn | ⊢ ⦋𝐴 / 𝑥⦌{𝑥} = {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-csbsnlem 36842 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌{𝑥} = {𝑦} | |
| 2 | 1 | csbeq2i 3880 | . 2 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌{𝑥} = ⦋𝐴 / 𝑦⦌{𝑦} |
| 3 | csbcow 3887 | . 2 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌{𝑥} = ⦋𝐴 / 𝑥⦌{𝑥} | |
| 4 | bj-csbsnlem 36842 | . 2 ⊢ ⦋𝐴 / 𝑦⦌{𝑦} = {𝐴} | |
| 5 | 2, 3, 4 | 3eqtr3i 2765 | 1 ⊢ ⦋𝐴 / 𝑥⦌{𝑥} = {𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ⦋csb 3872 {csn 4599 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3459 df-sbc 3764 df-csb 3873 df-sn 4600 |
| This theorem is referenced by: bj-snsetex 36902 |
| Copyright terms: Public domain | W3C validator |