![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-csbsn | Structured version Visualization version GIF version |
Description: Substitution in a singleton. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-csbsn | ⊢ ⦋𝐴 / 𝑥⦌{𝑥} = {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-csbsnlem 36846 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌{𝑥} = {𝑦} | |
2 | 1 | csbeq2i 3916 | . 2 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌{𝑥} = ⦋𝐴 / 𝑦⦌{𝑦} |
3 | csbcow 3923 | . 2 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌{𝑥} = ⦋𝐴 / 𝑥⦌{𝑥} | |
4 | bj-csbsnlem 36846 | . 2 ⊢ ⦋𝐴 / 𝑦⦌{𝑦} = {𝐴} | |
5 | 2, 3, 4 | 3eqtr3i 2769 | 1 ⊢ ⦋𝐴 / 𝑥⦌{𝑥} = {𝐴} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1535 ⦋csb 3908 {csn 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-12 2173 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1538 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-v 3479 df-sbc 3792 df-csb 3909 df-sn 4631 |
This theorem is referenced by: bj-snsetex 36906 |
Copyright terms: Public domain | W3C validator |