Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-csbsnlem Structured version   Visualization version   GIF version

Theorem bj-csbsnlem 36468
Description: Lemma for bj-csbsn 36469 (in this lemma, 𝑥 cannot occur in 𝐴). (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.)
Assertion
Ref Expression
bj-csbsnlem 𝐴 / 𝑥{𝑥} = {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-csbsnlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 abid 2706 . . . 4 (𝑦 ∈ {𝑦[𝐴 / 𝑥]𝑦 ∈ {𝑥}} ↔ [𝐴 / 𝑥]𝑦 ∈ {𝑥})
2 df-sbc 3775 . . . 4 ([𝐴 / 𝑥]𝑦 ∈ {𝑥} ↔ 𝐴 ∈ {𝑥𝑦 ∈ {𝑥}})
3 clelab 2871 . . . . 5 (𝐴 ∈ {𝑥𝑦 ∈ {𝑥}} ↔ ∃𝑥(𝑥 = 𝐴𝑦 ∈ {𝑥}))
4 velsn 4645 . . . . . . 7 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
54anbi2i 621 . . . . . 6 ((𝑥 = 𝐴𝑦 ∈ {𝑥}) ↔ (𝑥 = 𝐴𝑦 = 𝑥))
65exbii 1842 . . . . 5 (∃𝑥(𝑥 = 𝐴𝑦 ∈ {𝑥}) ↔ ∃𝑥(𝑥 = 𝐴𝑦 = 𝑥))
7 eqeq2 2737 . . . . . . . 8 (𝑥 = 𝐴 → (𝑦 = 𝑥𝑦 = 𝐴))
87pm5.32i 573 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝑥) ↔ (𝑥 = 𝐴𝑦 = 𝐴))
98exbii 1842 . . . . . 6 (∃𝑥(𝑥 = 𝐴𝑦 = 𝑥) ↔ ∃𝑥(𝑥 = 𝐴𝑦 = 𝐴))
10 19.41v 1945 . . . . . 6 (∃𝑥(𝑥 = 𝐴𝑦 = 𝐴) ↔ (∃𝑥 𝑥 = 𝐴𝑦 = 𝐴))
11 simpr 483 . . . . . . 7 ((∃𝑥 𝑥 = 𝐴𝑦 = 𝐴) → 𝑦 = 𝐴)
12 eqvisset 3481 . . . . . . . . 9 (𝑦 = 𝐴𝐴 ∈ V)
13 elisset 2807 . . . . . . . . 9 (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴)
1412, 13syl 17 . . . . . . . 8 (𝑦 = 𝐴 → ∃𝑥 𝑥 = 𝐴)
1514ancri 548 . . . . . . 7 (𝑦 = 𝐴 → (∃𝑥 𝑥 = 𝐴𝑦 = 𝐴))
1611, 15impbii 208 . . . . . 6 ((∃𝑥 𝑥 = 𝐴𝑦 = 𝐴) ↔ 𝑦 = 𝐴)
179, 10, 163bitri 296 . . . . 5 (∃𝑥(𝑥 = 𝐴𝑦 = 𝑥) ↔ 𝑦 = 𝐴)
183, 6, 173bitri 296 . . . 4 (𝐴 ∈ {𝑥𝑦 ∈ {𝑥}} ↔ 𝑦 = 𝐴)
191, 2, 183bitri 296 . . 3 (𝑦 ∈ {𝑦[𝐴 / 𝑥]𝑦 ∈ {𝑥}} ↔ 𝑦 = 𝐴)
20 df-csb 3891 . . . 4 𝐴 / 𝑥{𝑥} = {𝑦[𝐴 / 𝑥]𝑦 ∈ {𝑥}}
2120eleq2i 2817 . . 3 (𝑦𝐴 / 𝑥{𝑥} ↔ 𝑦 ∈ {𝑦[𝐴 / 𝑥]𝑦 ∈ {𝑥}})
22 velsn 4645 . . 3 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
2319, 21, 223bitr4i 302 . 2 (𝑦𝐴 / 𝑥{𝑥} ↔ 𝑦 ∈ {𝐴})
2423eqriv 2722 1 𝐴 / 𝑥{𝑥} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wex 1773  wcel 2098  {cab 2702  Vcvv 3463  [wsbc 3774  csb 3890  {csn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3465  df-sbc 3775  df-csb 3891  df-sn 4630
This theorem is referenced by:  bj-csbsn  36469
  Copyright terms: Public domain W3C validator