Step | Hyp | Ref
| Expression |
1 | | abid 2719 |
. . . 4
⊢ (𝑦 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ {𝑥}} ↔ [𝐴 / 𝑥]𝑦 ∈ {𝑥}) |
2 | | df-sbc 3717 |
. . . 4
⊢
([𝐴 / 𝑥]𝑦 ∈ {𝑥} ↔ 𝐴 ∈ {𝑥 ∣ 𝑦 ∈ {𝑥}}) |
3 | | clelab 2883 |
. . . . 5
⊢ (𝐴 ∈ {𝑥 ∣ 𝑦 ∈ {𝑥}} ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑦 ∈ {𝑥})) |
4 | | velsn 4577 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥) |
5 | 4 | anbi2i 623 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 ∈ {𝑥}) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝑥)) |
6 | 5 | exbii 1850 |
. . . . 5
⊢
(∃𝑥(𝑥 = 𝐴 ∧ 𝑦 ∈ {𝑥}) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑦 = 𝑥)) |
7 | | eqeq2 2750 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑦 = 𝑥 ↔ 𝑦 = 𝐴)) |
8 | 7 | pm5.32i 575 |
. . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝑥) ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
9 | 8 | exbii 1850 |
. . . . . 6
⊢
(∃𝑥(𝑥 = 𝐴 ∧ 𝑦 = 𝑥) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
10 | | 19.41v 1953 |
. . . . . 6
⊢
(∃𝑥(𝑥 = 𝐴 ∧ 𝑦 = 𝐴) ↔ (∃𝑥 𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
11 | | simpr 485 |
. . . . . . 7
⊢
((∃𝑥 𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) |
12 | | eqvisset 3449 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → 𝐴 ∈ V) |
13 | | elisset 2820 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴) |
14 | 12, 13 | syl 17 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → ∃𝑥 𝑥 = 𝐴) |
15 | 14 | ancri 550 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (∃𝑥 𝑥 = 𝐴 ∧ 𝑦 = 𝐴)) |
16 | 11, 15 | impbii 208 |
. . . . . 6
⊢
((∃𝑥 𝑥 = 𝐴 ∧ 𝑦 = 𝐴) ↔ 𝑦 = 𝐴) |
17 | 9, 10, 16 | 3bitri 297 |
. . . . 5
⊢
(∃𝑥(𝑥 = 𝐴 ∧ 𝑦 = 𝑥) ↔ 𝑦 = 𝐴) |
18 | 3, 6, 17 | 3bitri 297 |
. . . 4
⊢ (𝐴 ∈ {𝑥 ∣ 𝑦 ∈ {𝑥}} ↔ 𝑦 = 𝐴) |
19 | 1, 2, 18 | 3bitri 297 |
. . 3
⊢ (𝑦 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ {𝑥}} ↔ 𝑦 = 𝐴) |
20 | | df-csb 3833 |
. . . 4
⊢
⦋𝐴 /
𝑥⦌{𝑥} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ {𝑥}} |
21 | 20 | eleq2i 2830 |
. . 3
⊢ (𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑥} ↔ 𝑦 ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ {𝑥}}) |
22 | | velsn 4577 |
. . 3
⊢ (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴) |
23 | 19, 21, 22 | 3bitr4i 303 |
. 2
⊢ (𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑥} ↔ 𝑦 ∈ {𝐴}) |
24 | 23 | eqriv 2735 |
1
⊢
⦋𝐴 /
𝑥⦌{𝑥} = {𝐴} |