Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-csbsnlem Structured version   Visualization version   GIF version

Theorem bj-csbsnlem 33789
Description: Lemma for bj-csbsn 33790 (in this lemma, 𝑥 cannot occur in 𝐴). (Contributed by BJ, 6-Oct-2018.) (New usage is discouraged.)
Assertion
Ref Expression
bj-csbsnlem 𝐴 / 𝑥{𝑥} = {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-csbsnlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 abid 2778 . . . 4 (𝑦 ∈ {𝑦[𝐴 / 𝑥]𝑦 ∈ {𝑥}} ↔ [𝐴 / 𝑥]𝑦 ∈ {𝑥})
2 df-sbc 3708 . . . 4 ([𝐴 / 𝑥]𝑦 ∈ {𝑥} ↔ 𝐴 ∈ {𝑥𝑦 ∈ {𝑥}})
3 clelab 2929 . . . . 5 (𝐴 ∈ {𝑥𝑦 ∈ {𝑥}} ↔ ∃𝑥(𝑥 = 𝐴𝑦 ∈ {𝑥}))
4 velsn 4490 . . . . . . 7 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
54anbi2i 622 . . . . . 6 ((𝑥 = 𝐴𝑦 ∈ {𝑥}) ↔ (𝑥 = 𝐴𝑦 = 𝑥))
65exbii 1830 . . . . 5 (∃𝑥(𝑥 = 𝐴𝑦 ∈ {𝑥}) ↔ ∃𝑥(𝑥 = 𝐴𝑦 = 𝑥))
7 eqeq2 2805 . . . . . . . 8 (𝑥 = 𝐴 → (𝑦 = 𝑥𝑦 = 𝐴))
87pm5.32i 575 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝑥) ↔ (𝑥 = 𝐴𝑦 = 𝐴))
98exbii 1830 . . . . . 6 (∃𝑥(𝑥 = 𝐴𝑦 = 𝑥) ↔ ∃𝑥(𝑥 = 𝐴𝑦 = 𝐴))
10 19.41v 1928 . . . . . 6 (∃𝑥(𝑥 = 𝐴𝑦 = 𝐴) ↔ (∃𝑥 𝑥 = 𝐴𝑦 = 𝐴))
11 simpr 485 . . . . . . 7 ((∃𝑥 𝑥 = 𝐴𝑦 = 𝐴) → 𝑦 = 𝐴)
12 eqvisset 3453 . . . . . . . . 9 (𝑦 = 𝐴𝐴 ∈ V)
13 elisset 3447 . . . . . . . . 9 (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴)
1412, 13syl 17 . . . . . . . 8 (𝑦 = 𝐴 → ∃𝑥 𝑥 = 𝐴)
1514ancri 550 . . . . . . 7 (𝑦 = 𝐴 → (∃𝑥 𝑥 = 𝐴𝑦 = 𝐴))
1611, 15impbii 210 . . . . . 6 ((∃𝑥 𝑥 = 𝐴𝑦 = 𝐴) ↔ 𝑦 = 𝐴)
179, 10, 163bitri 298 . . . . 5 (∃𝑥(𝑥 = 𝐴𝑦 = 𝑥) ↔ 𝑦 = 𝐴)
183, 6, 173bitri 298 . . . 4 (𝐴 ∈ {𝑥𝑦 ∈ {𝑥}} ↔ 𝑦 = 𝐴)
191, 2, 183bitri 298 . . 3 (𝑦 ∈ {𝑦[𝐴 / 𝑥]𝑦 ∈ {𝑥}} ↔ 𝑦 = 𝐴)
20 df-csb 3814 . . . 4 𝐴 / 𝑥{𝑥} = {𝑦[𝐴 / 𝑥]𝑦 ∈ {𝑥}}
2120eleq2i 2873 . . 3 (𝑦𝐴 / 𝑥{𝑥} ↔ 𝑦 ∈ {𝑦[𝐴 / 𝑥]𝑦 ∈ {𝑥}})
22 velsn 4490 . . 3 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
2319, 21, 223bitr4i 304 . 2 (𝑦𝐴 / 𝑥{𝑥} ↔ 𝑦 ∈ {𝐴})
2423eqriv 2791 1 𝐴 / 𝑥{𝑥} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1522  wex 1762  wcel 2080  {cab 2774  Vcvv 3436  [wsbc 3707  csb 3813  {csn 4474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-ext 2768
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-v 3438  df-sbc 3708  df-csb 3814  df-sn 4475
This theorem is referenced by:  bj-csbsn  33790
  Copyright terms: Public domain W3C validator