![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
3 | 2 | csbeq2dv 3896 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
4 | 3 | mptru 1541 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ⊤wtru 1535 ⦋csb 3889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-sbc 3775 df-csb 3890 |
This theorem is referenced by: csbnest1g 4425 csbvarg 4427 csbsng 4708 csbprg 4709 csbopg 4887 csbuni 4934 csbmpt12 5553 csbxp 5771 csbcnv 5880 csbcnvgALT 5881 csbdm 5894 csbres 5982 csbrn 6201 csbpredg 6305 csbfv12 6939 fvmpocurryd 8270 csbfrecsg 8283 csbwrecsg 8320 csbnegg 11479 csbwrdg 14518 matgsum 22326 precsexlemcbv 28091 precsexlem3 28094 disjxpin 32363 f1od2 32487 bj-csbsn 36318 csbrecsg 36743 csbrdgg 36744 csboprabg 36745 csbmpo123 36746 csbfinxpg 36803 poimirlem24 37052 cdleme31so 39789 cdleme31sn 39790 cdleme31sn1 39791 cdleme31se 39792 cdleme31se2 39793 cdleme31sc 39794 cdleme31sde 39795 cdleme31sn2 39799 cdlemkid3N 40343 cdlemkid4 40344 climinf2mpt 45025 climinfmpt 45026 |
Copyright terms: Public domain | W3C validator |