![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
3 | 2 | csbeq2dv 3915 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
4 | 3 | mptru 1544 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊤wtru 1538 ⦋csb 3908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-sbc 3792 df-csb 3909 |
This theorem is referenced by: csbnest1g 4438 csbvarg 4440 csbsng 4713 csbprg 4714 csbopg 4896 csbuni 4941 csbmpt12 5567 csbxp 5788 csbcnv 5897 csbcnvgALT 5898 csbdm 5911 csbres 6003 csbrn 6225 csbpredg 6329 csbfv12 6955 fvmpocurryd 8295 csbfrecsg 8308 csbwrecsg 8345 csbnegg 11503 csbwrdg 14579 matgsum 22459 precsexlemcbv 28245 precsexlem3 28248 disjxpin 32608 f1od2 32739 sumeq2si 36184 prodeq2si 36186 bj-csbsn 36887 csbrecsg 37311 csbrdgg 37312 csboprabg 37313 csbmpo123 37314 csbfinxpg 37371 poimirlem24 37631 cdleme31so 40362 cdleme31sn 40363 cdleme31sn1 40364 cdleme31se 40365 cdleme31se2 40366 cdleme31sc 40367 cdleme31sde 40368 cdleme31sn2 40372 cdlemkid3N 40916 cdlemkid4 40917 climinf2mpt 45670 climinfmpt 45671 |
Copyright terms: Public domain | W3C validator |