| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
| 3 | 2 | csbeq2dv 3853 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| 4 | 3 | mptru 1548 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ⦋csb 3846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-sbc 3738 df-csb 3847 |
| This theorem is referenced by: csbnest1g 4381 csbvarg 4383 csbsng 4660 csbprg 4661 csbopg 4842 csbuni 4888 csbmpt12 5500 csbxp 5720 csbcnv 5827 csbcnvgALT 5828 csbdm 5841 csbres 5935 csbrn 6155 csbpredg 6259 csbfv12 6873 fvmpocurryd 8207 csbfrecsg 8220 csbwrecsg 8254 csbnegg 11364 csbwrdg 14453 matgsum 22353 precsexlemcbv 28145 precsexlem3 28148 disjxpin 32570 f1od2 32706 sumeq2si 36267 prodeq2si 36269 bj-csbsn 36969 csbrecsg 37393 csbrdgg 37394 csboprabg 37395 csbmpo123 37396 csbfinxpg 37453 poimirlem24 37704 cdleme31so 40498 cdleme31sn 40499 cdleme31sn1 40500 cdleme31se 40501 cdleme31se2 40502 cdleme31sc 40503 cdleme31sde 40504 cdleme31sn2 40508 cdlemkid3N 41052 cdlemkid4 41053 climinf2mpt 45836 climinfmpt 45837 |
| Copyright terms: Public domain | W3C validator |