![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
3 | 2 | csbeq2dv 3928 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
4 | 3 | mptru 1544 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊤wtru 1538 ⦋csb 3921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 df-csb 3922 |
This theorem is referenced by: csbnest1g 4455 csbvarg 4457 csbsng 4733 csbprg 4734 csbopg 4915 csbuni 4960 csbmpt12 5576 csbxp 5799 csbcnv 5908 csbcnvgALT 5909 csbdm 5922 csbres 6012 csbrn 6234 csbpredg 6338 csbfv12 6968 fvmpocurryd 8312 csbfrecsg 8325 csbwrecsg 8362 csbnegg 11533 csbwrdg 14592 matgsum 22464 precsexlemcbv 28248 precsexlem3 28251 disjxpin 32610 f1od2 32735 sumeq2si 36166 prodeq2si 36168 bj-csbsn 36870 csbrecsg 37294 csbrdgg 37295 csboprabg 37296 csbmpo123 37297 csbfinxpg 37354 poimirlem24 37604 cdleme31so 40336 cdleme31sn 40337 cdleme31sn1 40338 cdleme31se 40339 cdleme31se2 40340 cdleme31sc 40341 cdleme31sde 40342 cdleme31sn2 40346 cdlemkid3N 40890 cdlemkid4 40891 climinf2mpt 45635 climinfmpt 45636 |
Copyright terms: Public domain | W3C validator |