Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
3 | 2 | csbeq2dv 3840 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
4 | 3 | mptru 1546 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ⦋csb 3833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-sbc 3718 df-csb 3834 |
This theorem is referenced by: csbnest1g 4364 csbvarg 4366 csbsng 4645 csbprg 4646 csbopg 4823 csbuni 4871 csbmpt12 5471 csbxp 5687 csbcnv 5795 csbcnvgALT 5796 csbdm 5809 csbres 5897 csbrn 6111 csbpredg 6212 csbfv12 6826 fvmpocurryd 8096 csbfrecsg 8109 csbwrecsg 8146 csbnegg 11227 csbwrdg 14256 matgsum 21595 disjxpin 30936 f1od2 31065 bj-csbsn 35098 csbrecsg 35508 csbrdgg 35509 csboprabg 35510 csbmpo123 35511 csbfinxpg 35568 poimirlem24 35810 cdleme31so 38400 cdleme31sn 38401 cdleme31sn1 38402 cdleme31se 38403 cdleme31se2 38404 cdleme31sc 38405 cdleme31sde 38406 cdleme31sn2 38410 cdlemkid3N 38954 cdlemkid4 38955 climinf2mpt 43262 climinfmpt 43263 |
Copyright terms: Public domain | W3C validator |