Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
3 | 2 | csbeq2dv 3835 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
4 | 3 | mptru 1546 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: csbnest1g 4360 csbvarg 4362 csbsng 4641 csbprg 4642 csbopg 4819 csbuni 4867 csbmpt12 5463 csbxp 5676 csbcnv 5781 csbcnvgALT 5782 csbdm 5795 csbres 5883 csbrn 6095 csbpredg 6197 csbfv12 6799 fvmpocurryd 8058 csbfrecsg 8071 csbwrecsg 8108 csbnegg 11148 csbwrdg 14175 matgsum 21494 disjxpin 30828 f1od2 30958 bj-csbsn 35016 csbrecsg 35426 csbrdgg 35427 csboprabg 35428 csbmpo123 35429 csbfinxpg 35486 poimirlem24 35728 cdleme31so 38320 cdleme31sn 38321 cdleme31sn1 38322 cdleme31se 38323 cdleme31se2 38324 cdleme31sc 38325 cdleme31sde 38326 cdleme31sn2 38330 cdlemkid3N 38874 cdlemkid4 38875 climinf2mpt 43145 climinfmpt 43146 |
Copyright terms: Public domain | W3C validator |