| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
| 3 | 2 | csbeq2dv 3857 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| 4 | 3 | mptru 1548 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ⦋csb 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3742 df-csb 3851 |
| This theorem is referenced by: csbnest1g 4382 csbvarg 4384 csbsng 4661 csbprg 4662 csbopg 4843 csbuni 4888 csbmpt12 5497 csbxp 5716 csbcnv 5823 csbcnvgALT 5824 csbdm 5837 csbres 5931 csbrn 6150 csbpredg 6254 csbfv12 6867 fvmpocurryd 8201 csbfrecsg 8214 csbwrecsg 8248 csbnegg 11354 csbwrdg 14448 matgsum 22350 precsexlemcbv 28142 precsexlem3 28145 disjxpin 32563 f1od2 32697 sumeq2si 36235 prodeq2si 36237 bj-csbsn 36937 csbrecsg 37361 csbrdgg 37362 csboprabg 37363 csbmpo123 37364 csbfinxpg 37421 poimirlem24 37683 cdleme31so 40417 cdleme31sn 40418 cdleme31sn1 40419 cdleme31se 40420 cdleme31se2 40421 cdleme31sc 40422 cdleme31sde 40423 cdleme31sn2 40427 cdlemkid3N 40971 cdlemkid4 40972 climinf2mpt 45751 climinfmpt 45752 |
| Copyright terms: Public domain | W3C validator |