![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
3 | 2 | csbeq2dv 3900 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
4 | 3 | mptru 1548 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊤wtru 1542 ⦋csb 3893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-sbc 3778 df-csb 3894 |
This theorem is referenced by: csbnest1g 4429 csbvarg 4431 csbsng 4712 csbprg 4713 csbopg 4891 csbuni 4940 csbmpt12 5557 csbxp 5775 csbcnv 5883 csbcnvgALT 5884 csbdm 5897 csbres 5984 csbrn 6202 csbpredg 6306 csbfv12 6939 fvmpocurryd 8258 csbfrecsg 8271 csbwrecsg 8308 csbnegg 11461 csbwrdg 14498 matgsum 22159 precsexlemcbv 27879 precsexlem3 27882 disjxpin 32074 f1od2 32201 bj-csbsn 36087 csbrecsg 36512 csbrdgg 36513 csboprabg 36514 csbmpo123 36515 csbfinxpg 36572 poimirlem24 36815 cdleme31so 39553 cdleme31sn 39554 cdleme31sn1 39555 cdleme31se 39556 cdleme31se2 39557 cdleme31sc 39558 cdleme31sde 39559 cdleme31sn2 39563 cdlemkid3N 40107 cdlemkid4 40108 climinf2mpt 44729 climinfmpt 44730 |
Copyright terms: Public domain | W3C validator |