![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
3 | 2 | csbeq2dv 4186 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
4 | 3 | mptru 1661 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ⊤wtru 1654 ⦋csb 3727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2776 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2785 df-cleq 2791 df-clel 2794 df-sbc 3633 df-csb 3728 |
This theorem is referenced by: csbnest1g 4195 csbvarg 4197 csbsng 4432 csbprg 4433 csbopg 4610 csbuni 4657 csbmpt12 5205 csbxp 5404 csbcnv 5508 csbcnvgALT 5509 csbdm 5520 csbres 5602 csbrn 5811 csbfv12 6454 fvmpt2curryd 7634 csbnegg 10568 csbwrdg 13561 matgsum 20565 disjxpin 29911 f1od2 30010 bj-csbsn 33383 csbpredg 33664 csbwrecsg 33665 csbrecsg 33666 csbrdgg 33667 csboprabg 33668 csbmpt22g 33669 csbfinxpg 33716 poimirlem24 33915 cdleme31so 36393 cdleme31sn 36394 cdleme31sn1 36395 cdleme31se 36396 cdleme31se2 36397 cdleme31sc 36398 cdleme31sde 36399 cdleme31sn2 36403 cdlemkid3N 36947 cdlemkid4 36948 climinf2mpt 40679 climinfmpt 40680 |
Copyright terms: Public domain | W3C validator |