| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
| 3 | 2 | csbeq2dv 3871 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| 4 | 3 | mptru 1547 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ⦋csb 3864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3756 df-csb 3865 |
| This theorem is referenced by: csbnest1g 4397 csbvarg 4399 csbsng 4674 csbprg 4675 csbopg 4857 csbuni 4902 csbmpt12 5519 csbxp 5740 csbcnv 5849 csbcnvgALT 5850 csbdm 5863 csbres 5955 csbrn 6178 csbpredg 6282 csbfv12 6908 fvmpocurryd 8252 csbfrecsg 8265 csbwrecsg 8299 csbnegg 11424 csbwrdg 14515 matgsum 22330 precsexlemcbv 28114 precsexlem3 28117 disjxpin 32523 f1od2 32650 sumeq2si 36185 prodeq2si 36187 bj-csbsn 36887 csbrecsg 37311 csbrdgg 37312 csboprabg 37313 csbmpo123 37314 csbfinxpg 37371 poimirlem24 37633 cdleme31so 40368 cdleme31sn 40369 cdleme31sn1 40370 cdleme31se 40371 cdleme31se2 40372 cdleme31sc 40373 cdleme31sde 40374 cdleme31sn2 40378 cdlemkid3N 40922 cdlemkid4 40923 climinf2mpt 45705 climinfmpt 45706 |
| Copyright terms: Public domain | W3C validator |