| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
| 3 | 2 | csbeq2dv 3869 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| 4 | 3 | mptru 1547 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ⦋csb 3862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3754 df-csb 3863 |
| This theorem is referenced by: csbnest1g 4395 csbvarg 4397 csbsng 4672 csbprg 4673 csbopg 4855 csbuni 4900 csbmpt12 5517 csbxp 5738 csbcnv 5847 csbcnvgALT 5848 csbdm 5861 csbres 5953 csbrn 6176 csbpredg 6280 csbfv12 6906 fvmpocurryd 8250 csbfrecsg 8263 csbwrecsg 8297 csbnegg 11418 csbwrdg 14509 matgsum 22324 precsexlemcbv 28108 precsexlem3 28111 disjxpin 32517 f1od2 32644 sumeq2si 36190 prodeq2si 36192 bj-csbsn 36892 csbrecsg 37316 csbrdgg 37317 csboprabg 37318 csbmpo123 37319 csbfinxpg 37376 poimirlem24 37638 cdleme31so 40373 cdleme31sn 40374 cdleme31sn1 40375 cdleme31se 40376 cdleme31se2 40377 cdleme31sc 40378 cdleme31sde 40379 cdleme31sn2 40383 cdlemkid3N 40927 cdlemkid4 40928 climinf2mpt 45712 climinfmpt 45713 |
| Copyright terms: Public domain | W3C validator |