| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
| 3 | 2 | csbeq2dv 3886 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| 4 | 3 | mptru 1546 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ⊤wtru 1540 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: csbnest1g 4412 csbvarg 4414 csbsng 4688 csbprg 4689 csbopg 4871 csbuni 4916 csbmpt12 5542 csbxp 5765 csbcnv 5874 csbcnvgALT 5875 csbdm 5888 csbres 5980 csbrn 6203 csbpredg 6307 csbfv12 6934 fvmpocurryd 8278 csbfrecsg 8291 csbwrecsg 8328 csbnegg 11487 csbwrdg 14564 matgsum 22391 precsexlemcbv 28166 precsexlem3 28169 disjxpin 32536 f1od2 32667 sumeq2si 36162 prodeq2si 36164 bj-csbsn 36864 csbrecsg 37288 csbrdgg 37289 csboprabg 37290 csbmpo123 37291 csbfinxpg 37348 poimirlem24 37610 cdleme31so 40340 cdleme31sn 40341 cdleme31sn1 40342 cdleme31se 40343 cdleme31se2 40344 cdleme31sc 40345 cdleme31sde 40346 cdleme31sn2 40350 cdlemkid3N 40894 cdlemkid4 40895 climinf2mpt 45686 climinfmpt 45687 |
| Copyright terms: Public domain | W3C validator |