| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
| 3 | 2 | csbeq2dv 3886 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| 4 | 3 | mptru 1547 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: csbnest1g 4412 csbvarg 4414 csbsng 4689 csbprg 4690 csbopg 4872 csbuni 4917 csbmpt12 5537 csbxp 5759 csbcnv 5868 csbcnvgALT 5869 csbdm 5882 csbres 5974 csbrn 6197 csbpredg 6301 csbfv12 6929 fvmpocurryd 8275 csbfrecsg 8288 csbwrecsg 8325 csbnegg 11484 csbwrdg 14567 matgsum 22380 precsexlemcbv 28165 precsexlem3 28168 disjxpin 32574 f1od2 32703 sumeq2si 36225 prodeq2si 36227 bj-csbsn 36927 csbrecsg 37351 csbrdgg 37352 csboprabg 37353 csbmpo123 37354 csbfinxpg 37411 poimirlem24 37673 cdleme31so 40403 cdleme31sn 40404 cdleme31sn1 40405 cdleme31se 40406 cdleme31se2 40407 cdleme31sc 40408 cdleme31sde 40409 cdleme31sn2 40413 cdlemkid3N 40957 cdlemkid4 40958 climinf2mpt 45710 climinfmpt 45711 |
| Copyright terms: Public domain | W3C validator |