![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
3 | 2 | csbeq2dv 3901 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
4 | 3 | mptru 1549 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ⊤wtru 1543 ⦋csb 3894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-sbc 3779 df-csb 3895 |
This theorem is referenced by: csbnest1g 4430 csbvarg 4432 csbsng 4713 csbprg 4714 csbopg 4892 csbuni 4941 csbmpt12 5558 csbxp 5776 csbcnv 5884 csbcnvgALT 5885 csbdm 5898 csbres 5985 csbrn 6203 csbpredg 6307 csbfv12 6940 fvmpocurryd 8256 csbfrecsg 8269 csbwrecsg 8306 csbnegg 11457 csbwrdg 14494 matgsum 21939 precsexlemcbv 27652 precsexlem3 27655 disjxpin 31819 f1od2 31946 bj-csbsn 35784 csbrecsg 36209 csbrdgg 36210 csboprabg 36211 csbmpo123 36212 csbfinxpg 36269 poimirlem24 36512 cdleme31so 39250 cdleme31sn 39251 cdleme31sn1 39252 cdleme31se 39253 cdleme31se2 39254 cdleme31sc 39255 cdleme31sde 39256 cdleme31sn2 39260 cdlemkid3N 39804 cdlemkid4 39805 climinf2mpt 44430 climinfmpt 44431 |
Copyright terms: Public domain | W3C validator |