![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbeq2i | Structured version Visualization version GIF version |
Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
3 | 2 | csbeq2dv 3897 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
4 | 3 | mptru 1540 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ⊤wtru 1534 ⦋csb 3890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-sbc 3775 df-csb 3891 |
This theorem is referenced by: csbnest1g 4430 csbvarg 4432 csbsng 4713 csbprg 4714 csbopg 4892 csbuni 4939 csbmpt12 5558 csbxp 5776 csbcnv 5885 csbcnvgALT 5886 csbdm 5899 csbres 5987 csbrn 6207 csbpredg 6311 csbfv12 6942 fvmpocurryd 8275 csbfrecsg 8288 csbwrecsg 8325 csbnegg 11487 csbwrdg 14526 matgsum 22369 precsexlemcbv 28138 precsexlem3 28141 disjxpin 32435 f1od2 32560 bj-csbsn 36452 csbrecsg 36877 csbrdgg 36878 csboprabg 36879 csbmpo123 36880 csbfinxpg 36937 poimirlem24 37187 cdleme31so 39921 cdleme31sn 39922 cdleme31sn1 39923 cdleme31se 39924 cdleme31se2 39925 cdleme31sc 39926 cdleme31sde 39927 cdleme31sn2 39931 cdlemkid3N 40475 cdlemkid4 40476 climinf2mpt 45165 climinfmpt 45166 |
Copyright terms: Public domain | W3C validator |