MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbcow Structured version   Visualization version   GIF version

Theorem csbcow 3868
Description: Composition law for chained substitutions into a class. Version of csbco 3869 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 10-Nov-2005.) Avoid ax-13 2371. (Revised by Gino Giotto, 10-Jan-2024.)
Assertion
Ref Expression
csbcow 𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
Distinct variable groups:   𝑥,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem csbcow
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3854 . . . . . 6 𝑦 / 𝑥𝐵 = {𝑧[𝑦 / 𝑥]𝑧𝐵}
21abeq2i 2874 . . . . 5 (𝑧𝑦 / 𝑥𝐵[𝑦 / 𝑥]𝑧𝐵)
32sbcbii 3797 . . . 4 ([𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵[𝐴 / 𝑦][𝑦 / 𝑥]𝑧𝐵)
4 sbccow 3760 . . . 4 ([𝐴 / 𝑦][𝑦 / 𝑥]𝑧𝐵[𝐴 / 𝑥]𝑧𝐵)
53, 4bitri 275 . . 3 ([𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵[𝐴 / 𝑥]𝑧𝐵)
65abbii 2807 . 2 {𝑧[𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵} = {𝑧[𝐴 / 𝑥]𝑧𝐵}
7 df-csb 3854 . 2 𝐴 / 𝑦𝑦 / 𝑥𝐵 = {𝑧[𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵}
8 df-csb 3854 . 2 𝐴 / 𝑥𝐵 = {𝑧[𝐴 / 𝑥]𝑧𝐵}
96, 7, 83eqtr4i 2775 1 𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  {cab 2714  [wsbc 3737  csb 3853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-v 3445  df-sbc 3738  df-csb 3854
This theorem is referenced by:  csbnest1g  4387  csbvarg  4389  fvmpocurryd  8169  zsum  15537  fsum  15539  fsumsplitf  15561  zprod  15754  fprod  15758  gsumply1eq  21589  f1od2  31410  bj-csbsn  35230  sbccom2  36443  disjinfi  43114  climinf2mpt  43647  climinfmpt  43648  dvmptmulf  43870  dvmptfprod  43878
  Copyright terms: Public domain W3C validator