![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbcow | Structured version Visualization version GIF version |
Description: Composition law for chained substitutions into a class. Version of csbco 3908 with a disjoint variable condition, which does not require ax-13 2369. (Contributed by NM, 10-Nov-2005.) Avoid ax-13 2369. (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
csbcow | ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3893 | . . . . . 6 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
2 | 1 | eqabri 2875 | . . . . 5 ⊢ (𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵 ↔ [𝑦 / 𝑥]𝑧 ∈ 𝐵) |
3 | 2 | sbcbii 3836 | . . . 4 ⊢ ([𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵 ↔ [𝐴 / 𝑦][𝑦 / 𝑥]𝑧 ∈ 𝐵) |
4 | sbccow 3799 | . . . 4 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵) | |
5 | 3, 4 | bitri 274 | . . 3 ⊢ ([𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵) |
6 | 5 | abbii 2800 | . 2 ⊢ {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵} = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} |
7 | df-csb 3893 | . 2 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵} | |
8 | df-csb 3893 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} | |
9 | 6, 7, 8 | 3eqtr4i 2768 | 1 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 {cab 2707 [wsbc 3776 ⦋csb 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-sbc 3777 df-csb 3893 |
This theorem is referenced by: csbnest1g 4428 csbvarg 4430 fvmpocurryd 8258 zsum 15668 fsum 15670 fsumsplitf 15692 zprod 15885 fprod 15889 gsumply1eq 22049 f1od2 32213 bj-csbsn 36087 sbccom2 37296 disjinfi 44189 climinf2mpt 44728 climinfmpt 44729 dvmptmulf 44951 dvmptfprod 44959 |
Copyright terms: Public domain | W3C validator |