| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbcow | Structured version Visualization version GIF version | ||
| Description: Composition law for chained substitutions into a class. Version of csbco 3866 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 10-Nov-2005.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| csbcow | ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3851 | . . . . . 6 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
| 2 | 1 | eqabri 2874 | . . . . 5 ⊢ (𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵 ↔ [𝑦 / 𝑥]𝑧 ∈ 𝐵) |
| 3 | 2 | sbcbii 3798 | . . . 4 ⊢ ([𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵 ↔ [𝐴 / 𝑦][𝑦 / 𝑥]𝑧 ∈ 𝐵) |
| 4 | sbccow 3764 | . . . 4 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵) | |
| 5 | 3, 4 | bitri 275 | . . 3 ⊢ ([𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵 ↔ [𝐴 / 𝑥]𝑧 ∈ 𝐵) |
| 6 | 5 | abbii 2798 | . 2 ⊢ {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵} = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} |
| 7 | df-csb 3851 | . 2 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑦]𝑧 ∈ ⦋𝑦 / 𝑥⦌𝐵} | |
| 8 | df-csb 3851 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ [𝐴 / 𝑥]𝑧 ∈ 𝐵} | |
| 9 | 6, 7, 8 | 3eqtr4i 2764 | 1 ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 [wsbc 3741 ⦋csb 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sbc 3742 df-csb 3851 |
| This theorem is referenced by: csbnest1g 4382 csbvarg 4384 fvmpocurryd 8201 zsum 15625 fsum 15627 fsumsplitf 15649 zprod 15844 fprod 15848 gsumply1eq 22225 f1od2 32700 bj-csbsn 36944 sbccom2 38171 disjinfi 45235 climinf2mpt 45758 climinfmpt 45759 dvmptmulf 45981 |
| Copyright terms: Public domain | W3C validator |