MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbcow Structured version   Visualization version   GIF version

Theorem csbcow 3907
Description: Composition law for chained substitutions into a class. Version of csbco 3908 with a disjoint variable condition, which does not require ax-13 2369. (Contributed by NM, 10-Nov-2005.) Avoid ax-13 2369. (Revised by Gino Giotto, 10-Jan-2024.)
Assertion
Ref Expression
csbcow 𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
Distinct variable groups:   𝑥,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem csbcow
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3893 . . . . . 6 𝑦 / 𝑥𝐵 = {𝑧[𝑦 / 𝑥]𝑧𝐵}
21eqabri 2875 . . . . 5 (𝑧𝑦 / 𝑥𝐵[𝑦 / 𝑥]𝑧𝐵)
32sbcbii 3836 . . . 4 ([𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵[𝐴 / 𝑦][𝑦 / 𝑥]𝑧𝐵)
4 sbccow 3799 . . . 4 ([𝐴 / 𝑦][𝑦 / 𝑥]𝑧𝐵[𝐴 / 𝑥]𝑧𝐵)
53, 4bitri 274 . . 3 ([𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵[𝐴 / 𝑥]𝑧𝐵)
65abbii 2800 . 2 {𝑧[𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵} = {𝑧[𝐴 / 𝑥]𝑧𝐵}
7 df-csb 3893 . 2 𝐴 / 𝑦𝑦 / 𝑥𝐵 = {𝑧[𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵}
8 df-csb 3893 . 2 𝐴 / 𝑥𝐵 = {𝑧[𝐴 / 𝑥]𝑧𝐵}
96, 7, 83eqtr4i 2768 1 𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104  {cab 2707  [wsbc 3776  csb 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-sbc 3777  df-csb 3893
This theorem is referenced by:  csbnest1g  4428  csbvarg  4430  fvmpocurryd  8258  zsum  15668  fsum  15670  fsumsplitf  15692  zprod  15885  fprod  15889  gsumply1eq  22049  f1od2  32213  bj-csbsn  36087  sbccom2  37296  disjinfi  44189  climinf2mpt  44728  climinfmpt  44729  dvmptmulf  44951  dvmptfprod  44959
  Copyright terms: Public domain W3C validator