MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbcow Structured version   Visualization version   GIF version

Theorem csbcow 3857
Description: Composition law for chained substitutions into a class. Version of csbco 3858 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 10-Nov-2005.) Avoid ax-13 2370. (Revised by Gino Giotto, 10-Jan-2024.)
Assertion
Ref Expression
csbcow 𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
Distinct variable groups:   𝑥,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem csbcow
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3843 . . . . . 6 𝑦 / 𝑥𝐵 = {𝑧[𝑦 / 𝑥]𝑧𝐵}
21abeq2i 2873 . . . . 5 (𝑧𝑦 / 𝑥𝐵[𝑦 / 𝑥]𝑧𝐵)
32sbcbii 3786 . . . 4 ([𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵[𝐴 / 𝑦][𝑦 / 𝑥]𝑧𝐵)
4 sbccow 3749 . . . 4 ([𝐴 / 𝑦][𝑦 / 𝑥]𝑧𝐵[𝐴 / 𝑥]𝑧𝐵)
53, 4bitri 274 . . 3 ([𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵[𝐴 / 𝑥]𝑧𝐵)
65abbii 2806 . 2 {𝑧[𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵} = {𝑧[𝐴 / 𝑥]𝑧𝐵}
7 df-csb 3843 . 2 𝐴 / 𝑦𝑦 / 𝑥𝐵 = {𝑧[𝐴 / 𝑦]𝑧𝑦 / 𝑥𝐵}
8 df-csb 3843 . 2 𝐴 / 𝑥𝐵 = {𝑧[𝐴 / 𝑥]𝑧𝐵}
96, 7, 83eqtr4i 2774 1 𝐴 / 𝑦𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  {cab 2713  [wsbc 3726  csb 3842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-sbc 3727  df-csb 3843
This theorem is referenced by:  csbnest1g  4375  csbvarg  4377  fvmpocurryd  8149  zsum  15521  fsum  15523  fsumsplitf  15545  zprod  15738  fprod  15742  gsumply1eq  21574  f1od2  31284  bj-csbsn  35179  sbccom2  36381  disjinfi  43047  climinf2mpt  43580  climinfmpt  43581  dvmptmulf  43803  dvmptfprod  43811
  Copyright terms: Public domain W3C validator