Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-df-sb Structured version   Visualization version   GIF version

Theorem bj-df-sb 36769
Description: Proposed definition to replace df-sb 2068 and df-sbc 3738. Proof is therefore unimportant. Contrary to df-sb 2068, this definition makes a substituted formula false when one substitutes a non-existent object for a variable: this is better suited to the "Levy-style" treatment of classes as virtual objects adopted by set.mm. The equality 𝑦 = 𝑥 may seem "reversed", but it is written this way so that "substitution for oneself" does not require symmetry of equality to be seen to be the identity on propositions. (Contributed by BJ, 19-Feb-2026.)
Assertion
Ref Expression
bj-df-sb ([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴 ∧ ∀𝑥(𝑦 = 𝑥𝜑)))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem bj-df-sb
StepHypRef Expression
1 sbc7 3769 . 2 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴[𝑦 / 𝑥]𝜑))
2 sb6 2090 . . . . 5 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
3 sbsbc 3741 . . . . 5 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
4 equcom 2019 . . . . . . 7 (𝑥 = 𝑦𝑦 = 𝑥)
54imbi1i 349 . . . . . 6 ((𝑥 = 𝑦𝜑) ↔ (𝑦 = 𝑥𝜑))
65albii 1820 . . . . 5 (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑦 = 𝑥𝜑))
72, 3, 63bitr3i 301 . . . 4 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑦 = 𝑥𝜑))
87anbi2i 623 . . 3 ((𝑦 = 𝐴[𝑦 / 𝑥]𝜑) ↔ (𝑦 = 𝐴 ∧ ∀𝑥(𝑦 = 𝑥𝜑)))
98exbii 1849 . 2 (∃𝑦(𝑦 = 𝐴[𝑦 / 𝑥]𝜑) ↔ ∃𝑦(𝑦 = 𝐴 ∧ ∀𝑥(𝑦 = 𝑥𝜑)))
101, 9bitri 275 1 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑦(𝑦 = 𝐴 ∧ ∀𝑥(𝑦 = 𝑥𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  [wsb 2067  [wsbc 3737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-sbc 3738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator