Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ru Structured version   Visualization version   GIF version

Theorem bj-ru 36423
Description: Remove dependency on ax-13 2367 (and df-v 3473) from Russell's paradox ru 3775 expressed with primitive symbols and with a class variable 𝑉. Note the more economical use of elissetv 2810 instead of isset 3484 to avoid use of df-v 3473. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ru ¬ {𝑥 ∣ ¬ 𝑥𝑥} ∈ 𝑉

Proof of Theorem bj-ru
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bj-ru1 36422 . 2 ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥𝑥}
2 elissetv 2810 . 2 ({𝑥 ∣ ¬ 𝑥𝑥} ∈ 𝑉 → ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥𝑥})
31, 2mto 196 1 ¬ {𝑥 ∣ ¬ 𝑥𝑥} ∈ 𝑉
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1534  wex 1774  wcel 2099  {cab 2705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator