Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ru | Structured version Visualization version GIF version |
Description: Remove dependency on ax-13 2372 (and df-v 3424) from Russell's paradox ru 3710 expressed with primitive symbols and with a class variable 𝑉. Note the more economical use of elissetv 2819 instead of isset 3435 to avoid use of df-v 3424. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ru | ⊢ ¬ {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝑉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ru1 35059 | . 2 ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} | |
2 | elissetv 2819 | . 2 ⊢ ({𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝑉 → ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥}) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝑉 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |