![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ru | Structured version Visualization version GIF version |
Description: Remove dependency on ax-13 2380 (and df-v 3490) from Russell's paradox ru 3802 expressed with primitive symbols and with a class variable 𝑉. Note the more economical use of elissetv 2825 instead of isset 3502 to avoid use of df-v 3490. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ru | ⊢ ¬ {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝑉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ru1 36909 | . 2 ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} | |
2 | elissetv 2825 | . 2 ⊢ ({𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝑉 → ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥}) | |
3 | 1, 2 | mto 197 | 1 ⊢ ¬ {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝑉 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |