Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ru | Structured version Visualization version GIF version |
Description: Remove dependency on ax-13 2372 (and df-v 3434) from Russell's paradox ru 3715 expressed with primitive symbols and with a class variable 𝑉. Note the more economical use of elissetv 2819 instead of isset 3445 to avoid use of df-v 3434. (Contributed by BJ, 12-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ru | ⊢ ¬ {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝑉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ru1 35132 | . 2 ⊢ ¬ ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} | |
2 | elissetv 2819 | . 2 ⊢ ({𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝑉 → ∃𝑦 𝑦 = {𝑥 ∣ ¬ 𝑥 ∈ 𝑥}) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ {𝑥 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝑉 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |