|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > currysetlem | Structured version Visualization version GIF version | ||
| Description: Lemma for currysetlem 36947, where it is used with (𝑥 ∈ 𝑥 → 𝜑) substituted for 𝜓. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| currysetlem | ⊢ ({𝑥 ∣ 𝜓} ∈ 𝑉 → ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfab1 2906 | . 2 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} | |
| 2 | 1, 1 | nfel 2919 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} | 
| 3 | nfv 1913 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 4 | 2, 3 | nfim 1895 | . 2 ⊢ Ⅎ𝑥({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑) | 
| 5 | id 22 | . . . 4 ⊢ (𝑥 = {𝑥 ∣ 𝜓} → 𝑥 = {𝑥 ∣ 𝜓}) | |
| 6 | 5, 5 | eleq12d 2834 | . . 3 ⊢ (𝑥 = {𝑥 ∣ 𝜓} → (𝑥 ∈ 𝑥 ↔ {𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓})) | 
| 7 | 6 | imbi1d 341 | . 2 ⊢ (𝑥 = {𝑥 ∣ 𝜓} → ((𝑥 ∈ 𝑥 → 𝜑) ↔ ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑))) | 
| 8 | 1, 4, 7 | elabgf 3673 | 1 ⊢ ({𝑥 ∣ 𝜓} ∈ 𝑉 → ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 {cab 2713 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-v 3481 | 
| This theorem is referenced by: curryset 36948 | 
| Copyright terms: Public domain | W3C validator |