Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > currysetlem | Structured version Visualization version GIF version |
Description: Lemma for currysetlem 35134, where it is used with (𝑥 ∈ 𝑥 → 𝜑) substituted for 𝜓. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
Ref | Expression |
---|---|
currysetlem | ⊢ ({𝑥 ∣ 𝜓} ∈ 𝑉 → ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 2909 | . 2 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} | |
2 | 1, 1 | nfel 2921 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} |
3 | nfv 1917 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
4 | 2, 3 | nfim 1899 | . 2 ⊢ Ⅎ𝑥({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑) |
5 | id 22 | . . . 4 ⊢ (𝑥 = {𝑥 ∣ 𝜓} → 𝑥 = {𝑥 ∣ 𝜓}) | |
6 | 5, 5 | eleq12d 2833 | . . 3 ⊢ (𝑥 = {𝑥 ∣ 𝜓} → (𝑥 ∈ 𝑥 ↔ {𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓})) |
7 | 6 | imbi1d 342 | . 2 ⊢ (𝑥 = {𝑥 ∣ 𝜓} → ((𝑥 ∈ 𝑥 → 𝜑) ↔ ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑))) |
8 | 1, 4, 7 | elabgf 3605 | 1 ⊢ ({𝑥 ∣ 𝜓} ∈ 𝑉 → ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-v 3434 |
This theorem is referenced by: curryset 35135 |
Copyright terms: Public domain | W3C validator |