| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > currysetlem | Structured version Visualization version GIF version | ||
| Description: Lemma for currysetlem 36968, where it is used with (𝑥 ∈ 𝑥 → 𝜑) substituted for 𝜓. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| currysetlem | ⊢ ({𝑥 ∣ 𝜓} ∈ 𝑉 → ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab1 2901 | . 2 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} | |
| 2 | 1, 1 | nfel 2914 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} |
| 3 | nfv 1914 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 4 | 2, 3 | nfim 1896 | . 2 ⊢ Ⅎ𝑥({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑) |
| 5 | id 22 | . . . 4 ⊢ (𝑥 = {𝑥 ∣ 𝜓} → 𝑥 = {𝑥 ∣ 𝜓}) | |
| 6 | 5, 5 | eleq12d 2829 | . . 3 ⊢ (𝑥 = {𝑥 ∣ 𝜓} → (𝑥 ∈ 𝑥 ↔ {𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓})) |
| 7 | 6 | imbi1d 341 | . 2 ⊢ (𝑥 = {𝑥 ∣ 𝜓} → ((𝑥 ∈ 𝑥 → 𝜑) ↔ ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑))) |
| 8 | 1, 4, 7 | elabgf 3658 | 1 ⊢ ({𝑥 ∣ 𝜓} ∈ 𝑉 → ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-v 3466 |
| This theorem is referenced by: curryset 36969 |
| Copyright terms: Public domain | W3C validator |