Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  currysetlem Structured version   Visualization version   GIF version

Theorem currysetlem 35134
Description: Lemma for currysetlem 35134, where it is used with (𝑥𝑥𝜑) substituted for 𝜓. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
Assertion
Ref Expression
currysetlem ({𝑥𝜓} ∈ 𝑉 → ({𝑥𝜓} ∈ {𝑥 ∣ (𝑥𝑥𝜑)} ↔ ({𝑥𝜓} ∈ {𝑥𝜓} → 𝜑)))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem currysetlem
StepHypRef Expression
1 nfab1 2909 . 2 𝑥{𝑥𝜓}
21, 1nfel 2921 . . 3 𝑥{𝑥𝜓} ∈ {𝑥𝜓}
3 nfv 1917 . . 3 𝑥𝜑
42, 3nfim 1899 . 2 𝑥({𝑥𝜓} ∈ {𝑥𝜓} → 𝜑)
5 id 22 . . . 4 (𝑥 = {𝑥𝜓} → 𝑥 = {𝑥𝜓})
65, 5eleq12d 2833 . . 3 (𝑥 = {𝑥𝜓} → (𝑥𝑥 ↔ {𝑥𝜓} ∈ {𝑥𝜓}))
76imbi1d 342 . 2 (𝑥 = {𝑥𝜓} → ((𝑥𝑥𝜑) ↔ ({𝑥𝜓} ∈ {𝑥𝜓} → 𝜑)))
81, 4, 7elabgf 3605 1 ({𝑥𝜓} ∈ 𝑉 → ({𝑥𝜓} ∈ {𝑥 ∣ (𝑥𝑥𝜑)} ↔ ({𝑥𝜓} ∈ {𝑥𝜓} → 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-v 3434
This theorem is referenced by:  curryset  35135
  Copyright terms: Public domain W3C validator