Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > currysetlem | Structured version Visualization version GIF version |
Description: Lemma for currysetlem 35061, where it is used with (𝑥 ∈ 𝑥 → 𝜑) substituted for 𝜓. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
Ref | Expression |
---|---|
currysetlem | ⊢ ({𝑥 ∣ 𝜓} ∈ 𝑉 → ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 2908 | . 2 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} | |
2 | 1, 1 | nfel 2920 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} |
3 | nfv 1918 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
4 | 2, 3 | nfim 1900 | . 2 ⊢ Ⅎ𝑥({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑) |
5 | id 22 | . . . 4 ⊢ (𝑥 = {𝑥 ∣ 𝜓} → 𝑥 = {𝑥 ∣ 𝜓}) | |
6 | 5, 5 | eleq12d 2833 | . . 3 ⊢ (𝑥 = {𝑥 ∣ 𝜓} → (𝑥 ∈ 𝑥 ↔ {𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓})) |
7 | 6 | imbi1d 341 | . 2 ⊢ (𝑥 = {𝑥 ∣ 𝜓} → ((𝑥 ∈ 𝑥 → 𝜑) ↔ ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑))) |
8 | 1, 4, 7 | elabgf 3598 | 1 ⊢ ({𝑥 ∣ 𝜓} ∈ 𝑉 → ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ ({𝑥 ∣ 𝜓} ∈ {𝑥 ∣ 𝜓} → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-v 3424 |
This theorem is referenced by: curryset 35062 |
Copyright terms: Public domain | W3C validator |