Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sbnf Structured version   Visualization version   GIF version

Theorem bj-sbnf 35024
Description: Move nonfree predicate in and out of substitution; see sbal 2159 and sbex 2278. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-sbnf ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem bj-sbnf
StepHypRef Expression
1 sbim 2300 . . . 4 ([𝑧 / 𝑦](𝜑 → ∀𝑥𝜑) ↔ ([𝑧 / 𝑦]𝜑 → [𝑧 / 𝑦]∀𝑥𝜑))
2 sbal 2159 . . . . 5 ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
32imbi2i 336 . . . 4 (([𝑧 / 𝑦]𝜑 → [𝑧 / 𝑦]∀𝑥𝜑) ↔ ([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑))
41, 3bitri 274 . . 3 ([𝑧 / 𝑦](𝜑 → ∀𝑥𝜑) ↔ ([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑))
54albii 1822 . 2 (∀𝑥[𝑧 / 𝑦](𝜑 → ∀𝑥𝜑) ↔ ∀𝑥([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑))
6 nf5 2279 . . . 4 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
76sbbii 2079 . . 3 ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥(𝜑 → ∀𝑥𝜑))
8 sbal 2159 . . 3 ([𝑧 / 𝑦]∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥[𝑧 / 𝑦](𝜑 → ∀𝑥𝜑))
97, 8bitri 274 . 2 ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦](𝜑 → ∀𝑥𝜑))
10 nf5 2279 . 2 (Ⅎ𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥([𝑧 / 𝑦]𝜑 → ∀𝑥[𝑧 / 𝑦]𝜑))
115, 9, 103bitr4i 303 1 ([𝑧 / 𝑦]Ⅎ𝑥𝜑 ↔ Ⅎ𝑥[𝑧 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1786  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by:  bj-nfcf  35111
  Copyright terms: Public domain W3C validator