| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-disj2r | Structured version Visualization version GIF version | ||
| Description: Relative version of ssdifin0 4451, allowing a biconditional, and of disj2 4423. (Contributed by BJ, 11-Nov-2021.) This proof does not rely, even indirectly, on ssdifin0 4451 nor disj2 4423. (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-disj2r | ⊢ ((𝐴 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐵) ↔ ((𝐴 ∩ 𝐵) ∩ 𝑉) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3934 | . . 3 ⊢ ((𝐴 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐵) ↔ ((𝐴 ∩ 𝑉) ∩ (𝑉 ∖ 𝐵)) = (𝐴 ∩ 𝑉)) | |
| 2 | indif2 4246 | . . . . 5 ⊢ ((𝐴 ∩ 𝑉) ∩ (𝑉 ∖ 𝐵)) = (((𝐴 ∩ 𝑉) ∩ 𝑉) ∖ 𝐵) | |
| 3 | inss1 4202 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝑉) ∩ 𝑉) ⊆ (𝐴 ∩ 𝑉) | |
| 4 | ssid 3971 | . . . . . . . 8 ⊢ (𝐴 ∩ 𝑉) ⊆ (𝐴 ∩ 𝑉) | |
| 5 | inss2 4203 | . . . . . . . 8 ⊢ (𝐴 ∩ 𝑉) ⊆ 𝑉 | |
| 6 | 4, 5 | ssini 4205 | . . . . . . 7 ⊢ (𝐴 ∩ 𝑉) ⊆ ((𝐴 ∩ 𝑉) ∩ 𝑉) |
| 7 | 3, 6 | eqssi 3965 | . . . . . 6 ⊢ ((𝐴 ∩ 𝑉) ∩ 𝑉) = (𝐴 ∩ 𝑉) |
| 8 | 7 | difeq1i 4087 | . . . . 5 ⊢ (((𝐴 ∩ 𝑉) ∩ 𝑉) ∖ 𝐵) = ((𝐴 ∩ 𝑉) ∖ 𝐵) |
| 9 | 2, 8 | eqtri 2753 | . . . 4 ⊢ ((𝐴 ∩ 𝑉) ∩ (𝑉 ∖ 𝐵)) = ((𝐴 ∩ 𝑉) ∖ 𝐵) |
| 10 | 9 | eqeq1i 2735 | . . 3 ⊢ (((𝐴 ∩ 𝑉) ∩ (𝑉 ∖ 𝐵)) = (𝐴 ∩ 𝑉) ↔ ((𝐴 ∩ 𝑉) ∖ 𝐵) = (𝐴 ∩ 𝑉)) |
| 11 | eqcom 2737 | . . 3 ⊢ (((𝐴 ∩ 𝑉) ∖ 𝐵) = (𝐴 ∩ 𝑉) ↔ (𝐴 ∩ 𝑉) = ((𝐴 ∩ 𝑉) ∖ 𝐵)) | |
| 12 | 1, 10, 11 | 3bitri 297 | . 2 ⊢ ((𝐴 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐵) ↔ (𝐴 ∩ 𝑉) = ((𝐴 ∩ 𝑉) ∖ 𝐵)) |
| 13 | disj3 4419 | . 2 ⊢ (((𝐴 ∩ 𝑉) ∩ 𝐵) = ∅ ↔ (𝐴 ∩ 𝑉) = ((𝐴 ∩ 𝑉) ∖ 𝐵)) | |
| 14 | in32 4195 | . . 3 ⊢ ((𝐴 ∩ 𝑉) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∩ 𝑉) | |
| 15 | 14 | eqeq1i 2735 | . 2 ⊢ (((𝐴 ∩ 𝑉) ∩ 𝐵) = ∅ ↔ ((𝐴 ∩ 𝐵) ∩ 𝑉) = ∅) |
| 16 | 12, 13, 15 | 3bitr2i 299 | 1 ⊢ ((𝐴 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐵) ↔ ((𝐴 ∩ 𝐵) ∩ 𝑉) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∖ cdif 3913 ∩ cin 3915 ⊆ wss 3916 ∅c0 4298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3919 df-in 3923 df-ss 3933 df-nul 4299 |
| This theorem is referenced by: bj-sscon 37012 |
| Copyright terms: Public domain | W3C validator |