Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-disj2r | Structured version Visualization version GIF version |
Description: Relative version of ssdifin0 4418, allowing a biconditional, and of disj2 4393. (Contributed by BJ, 11-Nov-2021.) This proof does not rely, even indirectly, on ssdifin0 4418 nor disj2 4393. (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-disj2r | ⊢ ((𝐴 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐵) ↔ ((𝐴 ∩ 𝐵) ∩ 𝑉) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3905 | . . 3 ⊢ ((𝐴 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐵) ↔ ((𝐴 ∩ 𝑉) ∩ (𝑉 ∖ 𝐵)) = (𝐴 ∩ 𝑉)) | |
2 | indif2 4206 | . . . . 5 ⊢ ((𝐴 ∩ 𝑉) ∩ (𝑉 ∖ 𝐵)) = (((𝐴 ∩ 𝑉) ∩ 𝑉) ∖ 𝐵) | |
3 | inss1 4164 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝑉) ∩ 𝑉) ⊆ (𝐴 ∩ 𝑉) | |
4 | ssid 3944 | . . . . . . . 8 ⊢ (𝐴 ∩ 𝑉) ⊆ (𝐴 ∩ 𝑉) | |
5 | inss2 4165 | . . . . . . . 8 ⊢ (𝐴 ∩ 𝑉) ⊆ 𝑉 | |
6 | 4, 5 | ssini 4167 | . . . . . . 7 ⊢ (𝐴 ∩ 𝑉) ⊆ ((𝐴 ∩ 𝑉) ∩ 𝑉) |
7 | 3, 6 | eqssi 3938 | . . . . . 6 ⊢ ((𝐴 ∩ 𝑉) ∩ 𝑉) = (𝐴 ∩ 𝑉) |
8 | 7 | difeq1i 4054 | . . . . 5 ⊢ (((𝐴 ∩ 𝑉) ∩ 𝑉) ∖ 𝐵) = ((𝐴 ∩ 𝑉) ∖ 𝐵) |
9 | 2, 8 | eqtri 2766 | . . . 4 ⊢ ((𝐴 ∩ 𝑉) ∩ (𝑉 ∖ 𝐵)) = ((𝐴 ∩ 𝑉) ∖ 𝐵) |
10 | 9 | eqeq1i 2743 | . . 3 ⊢ (((𝐴 ∩ 𝑉) ∩ (𝑉 ∖ 𝐵)) = (𝐴 ∩ 𝑉) ↔ ((𝐴 ∩ 𝑉) ∖ 𝐵) = (𝐴 ∩ 𝑉)) |
11 | eqcom 2745 | . . 3 ⊢ (((𝐴 ∩ 𝑉) ∖ 𝐵) = (𝐴 ∩ 𝑉) ↔ (𝐴 ∩ 𝑉) = ((𝐴 ∩ 𝑉) ∖ 𝐵)) | |
12 | 1, 10, 11 | 3bitri 297 | . 2 ⊢ ((𝐴 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐵) ↔ (𝐴 ∩ 𝑉) = ((𝐴 ∩ 𝑉) ∖ 𝐵)) |
13 | disj3 4389 | . 2 ⊢ (((𝐴 ∩ 𝑉) ∩ 𝐵) = ∅ ↔ (𝐴 ∩ 𝑉) = ((𝐴 ∩ 𝑉) ∖ 𝐵)) | |
14 | in32 4157 | . . 3 ⊢ ((𝐴 ∩ 𝑉) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∩ 𝑉) | |
15 | 14 | eqeq1i 2743 | . 2 ⊢ (((𝐴 ∩ 𝑉) ∩ 𝐵) = ∅ ↔ ((𝐴 ∩ 𝐵) ∩ 𝑉) = ∅) |
16 | 12, 13, 15 | 3bitr2i 299 | 1 ⊢ ((𝐴 ∩ 𝑉) ⊆ (𝑉 ∖ 𝐵) ↔ ((𝐴 ∩ 𝐵) ∩ 𝑉) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∖ cdif 3885 ∩ cin 3887 ⊆ wss 3888 ∅c0 4258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3433 df-dif 3891 df-in 3895 df-ss 3905 df-nul 4259 |
This theorem is referenced by: bj-sscon 35216 |
Copyright terms: Public domain | W3C validator |