![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uneq1d | Structured version Visualization version GIF version |
Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
uneq1d | ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | uneq1 3983 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∪ cun 3790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-v 3400 df-un 3797 |
This theorem is referenced by: ifeq1 4311 preq1 4500 tpeq1 4509 tpeq2 4510 tpprceq3 4566 iunxdif3 4840 iununi 4844 resasplit 6324 fresaunres2 6326 fmptpr 6705 funresdfunsn 6726 ressuppssdif 7597 sbthlem5 8362 fodomr 8399 domunfican 8521 brwdom2 8767 cdaval 9327 ackbij1lem2 9378 ttukeylem3 9668 snunioo 12615 snunioc 12617 prunioo 12618 fzpred 12706 fseq1p1m1 12732 nn0split 12773 fz0sn0fz1 12775 fzo0sn0fzo1 12876 fzosplitpr 12896 s2prop 14058 s4prop 14061 fsum1p 14889 fprod1p 15101 setsval 16285 setsabs 16298 setscom 16299 prdsval 16501 prdsdsval 16524 prdsdsval2 16530 prdsdsval3 16531 mreexexlem3d 16692 mreexexlem4d 16693 estrresOLD 17164 estrres 17165 symg2bas 18201 evlseu 19912 ordtuni 21402 lfinun 21737 alexsubALTlem3 22261 ustssco 22426 trust 22441 ressprdsds 22584 xpsdsval 22594 nulmbl2 23740 uniioombllem3 23789 uniioombllem4 23790 plyeq0 24404 plyaddlem1 24406 plymullem1 24407 fta1lem 24499 vieta1lem2 24503 birthdaylem2 25131 edglnl 26492 iuninc 29941 difelcarsg 30970 actfunsnf1o 31284 reprsuc 31295 breprexplema 31310 bnj1416 31706 mclsval 32059 mclsax 32065 rankung 32862 topjoin 32948 bj-tageq 33536 finixpnum 34019 poimirlem3 34038 poimirlem4 34039 poimirlem6 34041 poimirlem7 34042 poimirlem9 34044 poimirlem16 34051 poimirlem17 34052 poimirlem28 34063 mblfinlem2 34073 islshpsm 35134 lshpnel2N 35139 lkrlsp3 35258 pclfinclN 36104 dochsatshp 37605 mapfzcons1 38240 iunrelexp0 38951 isotone1 39302 fiiuncl 40165 nnsplit 40482 fourierdlem32 41283 fzopred 42364 fzopredsuc 42365 aacllem 43653 |
Copyright terms: Public domain | W3C validator |