Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xtageq | Structured version Visualization version GIF version |
Description: The products of a given class and the tagging of either of two equal classes are equal. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-xtageq | ⊢ (𝐴 = 𝐵 → (𝐶 × tag 𝐴) = (𝐶 × tag 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-tageq 35166 | . 2 ⊢ (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵) | |
2 | 1 | xpeq2d 5619 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × tag 𝐴) = (𝐶 × tag 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 × cxp 5587 tag bj-ctag 35164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-un 3892 df-opab 5137 df-xp 5595 df-bj-sngl 35156 df-bj-tag 35165 |
This theorem is referenced by: bj-1upleq 35189 bj-2upleq 35202 |
Copyright terms: Public domain | W3C validator |