![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xtageq | Structured version Visualization version GIF version |
Description: The products of a given class and the tagging of either of two equal classes are equal. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-xtageq | ⊢ (𝐴 = 𝐵 → (𝐶 × tag 𝐴) = (𝐶 × tag 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-tageq 36161 | . 2 ⊢ (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵) | |
2 | 1 | xpeq2d 5707 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × tag 𝐴) = (𝐶 × tag 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 × cxp 5675 tag bj-ctag 36159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rex 3070 df-v 3475 df-un 3954 df-opab 5212 df-xp 5683 df-bj-sngl 36151 df-bj-tag 36160 |
This theorem is referenced by: bj-1upleq 36184 bj-2upleq 36197 |
Copyright terms: Public domain | W3C validator |