![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xtageq | Structured version Visualization version GIF version |
Description: The products of a given class and the tagging of either of two equal classes are equal. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-xtageq | ⊢ (𝐴 = 𝐵 → (𝐶 × tag 𝐴) = (𝐶 × tag 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-tageq 36959 | . 2 ⊢ (𝐴 = 𝐵 → tag 𝐴 = tag 𝐵) | |
2 | 1 | xpeq2d 5719 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × tag 𝐴) = (𝐶 × tag 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 × cxp 5687 tag bj-ctag 36957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rex 3069 df-v 3480 df-un 3968 df-opab 5211 df-xp 5695 df-bj-sngl 36949 df-bj-tag 36958 |
This theorem is referenced by: bj-1upleq 36982 bj-2upleq 36995 |
Copyright terms: Public domain | W3C validator |