Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nuliotaALT Structured version   Visualization version   GIF version

Theorem bj-nuliotaALT 37024
Description: Alternate proof of bj-nuliota 37023. Note that this alternate proof uses the fact that 𝑥𝜑 evaluates to when there is no 𝑥 satisfying 𝜑 (iotanul 6551). This is an implementation detail of the encoding currently used in set.mm and should be avoided. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-nuliotaALT ∅ = (℩𝑥𝑦 ¬ 𝑦𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-nuliotaALT
StepHypRef Expression
1 0ss 4423 . 2 ∅ ⊆ (℩𝑥𝑦 ¬ 𝑦𝑥)
2 iotassuni 6545 . . 3 (℩𝑥𝑦 ¬ 𝑦𝑥) ⊆ {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥}
3 eq0 4373 . . . . . . 7 (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦𝑥)
43bicomi 224 . . . . . 6 (∀𝑦 ¬ 𝑦𝑥𝑥 = ∅)
54abbii 2812 . . . . 5 {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥} = {𝑥𝑥 = ∅}
65unieqi 4943 . . . 4 {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥} = {𝑥𝑥 = ∅}
7 df-sn 4649 . . . . . 6 {∅} = {𝑥𝑥 = ∅}
87eqcomi 2749 . . . . 5 {𝑥𝑥 = ∅} = {∅}
98unieqi 4943 . . . 4 {𝑥𝑥 = ∅} = {∅}
10 0ex 5325 . . . . 5 ∅ ∈ V
1110unisn 4950 . . . 4 {∅} = ∅
126, 9, 113eqtri 2772 . . 3 {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥} = ∅
132, 12sseqtri 4045 . 2 (℩𝑥𝑦 ¬ 𝑦𝑥) ⊆ ∅
141, 13eqssi 4025 1 ∅ = (℩𝑥𝑦 ¬ 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1535   = wceq 1537  {cab 2717  c0 4352  {csn 4648   cuni 4931  cio 6523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-uni 4932  df-iota 6525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator