Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nuliotaALT Structured version   Visualization version   GIF version

Theorem bj-nuliotaALT 34923
Description: Alternate proof of bj-nuliota 34922. Note that this alternate proof uses the fact that 𝑥𝜑 evaluates to when there is no 𝑥 satisfying 𝜑 (iotanul 6347). This is an implementation detail of the encoding currently used in set.mm and should be avoided. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-nuliotaALT ∅ = (℩𝑥𝑦 ¬ 𝑦𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-nuliotaALT
StepHypRef Expression
1 0ss 4301 . 2 ∅ ⊆ (℩𝑥𝑦 ¬ 𝑦𝑥)
2 iotassuni 6348 . . 3 (℩𝑥𝑦 ¬ 𝑦𝑥) ⊆ {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥}
3 eq0 4248 . . . . . . 7 (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦𝑥)
43bicomi 227 . . . . . 6 (∀𝑦 ¬ 𝑦𝑥𝑥 = ∅)
54abbii 2804 . . . . 5 {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥} = {𝑥𝑥 = ∅}
65unieqi 4822 . . . 4 {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥} = {𝑥𝑥 = ∅}
7 df-sn 4532 . . . . . 6 {∅} = {𝑥𝑥 = ∅}
87eqcomi 2743 . . . . 5 {𝑥𝑥 = ∅} = {∅}
98unieqi 4822 . . . 4 {𝑥𝑥 = ∅} = {∅}
10 0ex 5189 . . . . 5 ∅ ∈ V
1110unisn 4831 . . . 4 {∅} = ∅
126, 9, 113eqtri 2766 . . 3 {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥} = ∅
132, 12sseqtri 3927 . 2 (℩𝑥𝑦 ¬ 𝑦𝑥) ⊆ ∅
141, 13eqssi 3907 1 ∅ = (℩𝑥𝑦 ¬ 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1541   = wceq 1543  {cab 2712  c0 4227  {csn 4531   cuni 4809  cio 6325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-nul 5188
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-ral 3059  df-rex 3060  df-v 3403  df-sbc 3688  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-sn 4532  df-pr 4534  df-uni 4810  df-iota 6327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator