Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nuliotaALT Structured version   Visualization version   GIF version

Theorem bj-nuliotaALT 34345
Description: Alternate proof of bj-nuliota 34344. Note that this alternate proof uses the fact that 𝑥𝜑 evaluates to when there is no 𝑥 satisfying 𝜑 (iotanul 6327). This is an implementation detail of the encoding currently used in set.mm and should be avoided. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-nuliotaALT ∅ = (℩𝑥𝑦 ¬ 𝑦𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-nuliotaALT
StepHypRef Expression
1 0ss 4349 . 2 ∅ ⊆ (℩𝑥𝑦 ¬ 𝑦𝑥)
2 iotassuni 6328 . . 3 (℩𝑥𝑦 ¬ 𝑦𝑥) ⊆ {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥}
3 eq0 4307 . . . . . . 7 (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦𝑥)
43bicomi 226 . . . . . 6 (∀𝑦 ¬ 𝑦𝑥𝑥 = ∅)
54abbii 2886 . . . . 5 {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥} = {𝑥𝑥 = ∅}
65unieqi 4840 . . . 4 {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥} = {𝑥𝑥 = ∅}
7 df-sn 4561 . . . . . 6 {∅} = {𝑥𝑥 = ∅}
87eqcomi 2830 . . . . 5 {𝑥𝑥 = ∅} = {∅}
98unieqi 4840 . . . 4 {𝑥𝑥 = ∅} = {∅}
10 0ex 5203 . . . . 5 ∅ ∈ V
1110unisn 4847 . . . 4 {∅} = ∅
126, 9, 113eqtri 2848 . . 3 {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥} = ∅
132, 12sseqtri 4002 . 2 (℩𝑥𝑦 ¬ 𝑦𝑥) ⊆ ∅
141, 13eqssi 3982 1 ∅ = (℩𝑥𝑦 ¬ 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1531   = wceq 1533  {cab 2799  c0 4290  {csn 4560   cuni 4831  cio 6306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-nul 5202
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-sn 4561  df-pr 4563  df-uni 4832  df-iota 6308
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator