![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nuliotaALT | Structured version Visualization version GIF version |
Description: Alternate proof of bj-nuliota 33591. Note that this alternate proof uses the fact that ℩𝑥𝜑 evaluates to ∅ when there is no 𝑥 satisfying 𝜑 (iotanul 6114). This is an implementation detail of the encoding currently used in set.mm and should be avoided. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-nuliotaALT | ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4197 | . 2 ⊢ ∅ ⊆ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
2 | iotassuni 6115 | . . 3 ⊢ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) ⊆ ∪ {𝑥 ∣ ∀𝑦 ¬ 𝑦 ∈ 𝑥} | |
3 | eq0 4156 | . . . . . . 7 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
4 | 3 | bicomi 216 | . . . . . 6 ⊢ (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ 𝑥 = ∅) |
5 | 4 | abbii 2907 | . . . . 5 ⊢ {𝑥 ∣ ∀𝑦 ¬ 𝑦 ∈ 𝑥} = {𝑥 ∣ 𝑥 = ∅} |
6 | 5 | unieqi 4680 | . . . 4 ⊢ ∪ {𝑥 ∣ ∀𝑦 ¬ 𝑦 ∈ 𝑥} = ∪ {𝑥 ∣ 𝑥 = ∅} |
7 | df-sn 4398 | . . . . . 6 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
8 | 7 | eqcomi 2786 | . . . . 5 ⊢ {𝑥 ∣ 𝑥 = ∅} = {∅} |
9 | 8 | unieqi 4680 | . . . 4 ⊢ ∪ {𝑥 ∣ 𝑥 = ∅} = ∪ {∅} |
10 | 0ex 5026 | . . . . 5 ⊢ ∅ ∈ V | |
11 | 10 | unisn 4687 | . . . 4 ⊢ ∪ {∅} = ∅ |
12 | 6, 9, 11 | 3eqtri 2805 | . . 3 ⊢ ∪ {𝑥 ∣ ∀𝑦 ¬ 𝑦 ∈ 𝑥} = ∅ |
13 | 2, 12 | sseqtri 3855 | . 2 ⊢ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) ⊆ ∅ |
14 | 1, 13 | eqssi 3836 | 1 ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1599 = wceq 1601 {cab 2762 ∅c0 4140 {csn 4397 ∪ cuni 4671 ℩cio 6097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-nul 5025 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-sn 4398 df-pr 4400 df-uni 4672 df-iota 6099 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |