| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nuliotaALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of bj-nuliota 37052. Note that this alternate proof uses the fact that ℩𝑥𝜑 evaluates to ∅ when there is no 𝑥 satisfying 𝜑 (iotanul 6492). This is an implementation detail of the encoding currently used in set.mm and should be avoided. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nuliotaALT | ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4366 | . 2 ⊢ ∅ ⊆ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
| 2 | iotassuni 6486 | . . 3 ⊢ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) ⊆ ∪ {𝑥 ∣ ∀𝑦 ¬ 𝑦 ∈ 𝑥} | |
| 3 | eq0 4316 | . . . . . . 7 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
| 4 | 3 | bicomi 224 | . . . . . 6 ⊢ (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ 𝑥 = ∅) |
| 5 | 4 | abbii 2797 | . . . . 5 ⊢ {𝑥 ∣ ∀𝑦 ¬ 𝑦 ∈ 𝑥} = {𝑥 ∣ 𝑥 = ∅} |
| 6 | 5 | unieqi 4886 | . . . 4 ⊢ ∪ {𝑥 ∣ ∀𝑦 ¬ 𝑦 ∈ 𝑥} = ∪ {𝑥 ∣ 𝑥 = ∅} |
| 7 | df-sn 4593 | . . . . . 6 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
| 8 | 7 | eqcomi 2739 | . . . . 5 ⊢ {𝑥 ∣ 𝑥 = ∅} = {∅} |
| 9 | 8 | unieqi 4886 | . . . 4 ⊢ ∪ {𝑥 ∣ 𝑥 = ∅} = ∪ {∅} |
| 10 | 0ex 5265 | . . . . 5 ⊢ ∅ ∈ V | |
| 11 | 10 | unisn 4893 | . . . 4 ⊢ ∪ {∅} = ∅ |
| 12 | 6, 9, 11 | 3eqtri 2757 | . . 3 ⊢ ∪ {𝑥 ∣ ∀𝑦 ¬ 𝑦 ∈ 𝑥} = ∅ |
| 13 | 2, 12 | sseqtri 3998 | . 2 ⊢ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) ⊆ ∅ |
| 14 | 1, 13 | eqssi 3966 | 1 ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 = wceq 1540 {cab 2708 ∅c0 4299 {csn 4592 ∪ cuni 4874 ℩cio 6465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-sn 4593 df-pr 4595 df-uni 4875 df-iota 6467 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |