| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nuliotaALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of bj-nuliota 37101. Note that this alternate proof uses the fact that ℩𝑥𝜑 evaluates to ∅ when there is no 𝑥 satisfying 𝜑 (iotanul 6461). This is an implementation detail of the encoding currently used in set.mm and should be avoided. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nuliotaALT | ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4347 | . 2 ⊢ ∅ ⊆ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
| 2 | iotassuni 6456 | . . 3 ⊢ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) ⊆ ∪ {𝑥 ∣ ∀𝑦 ¬ 𝑦 ∈ 𝑥} | |
| 3 | eq0 4297 | . . . . . . 7 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
| 4 | 3 | bicomi 224 | . . . . . 6 ⊢ (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ 𝑥 = ∅) |
| 5 | 4 | abbii 2798 | . . . . 5 ⊢ {𝑥 ∣ ∀𝑦 ¬ 𝑦 ∈ 𝑥} = {𝑥 ∣ 𝑥 = ∅} |
| 6 | 5 | unieqi 4868 | . . . 4 ⊢ ∪ {𝑥 ∣ ∀𝑦 ¬ 𝑦 ∈ 𝑥} = ∪ {𝑥 ∣ 𝑥 = ∅} |
| 7 | df-sn 4574 | . . . . . 6 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
| 8 | 7 | eqcomi 2740 | . . . . 5 ⊢ {𝑥 ∣ 𝑥 = ∅} = {∅} |
| 9 | 8 | unieqi 4868 | . . . 4 ⊢ ∪ {𝑥 ∣ 𝑥 = ∅} = ∪ {∅} |
| 10 | 0ex 5243 | . . . . 5 ⊢ ∅ ∈ V | |
| 11 | 10 | unisn 4875 | . . . 4 ⊢ ∪ {∅} = ∅ |
| 12 | 6, 9, 11 | 3eqtri 2758 | . . 3 ⊢ ∪ {𝑥 ∣ ∀𝑦 ¬ 𝑦 ∈ 𝑥} = ∅ |
| 13 | 2, 12 | sseqtri 3978 | . 2 ⊢ (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) ⊆ ∅ |
| 14 | 1, 13 | eqssi 3946 | 1 ⊢ ∅ = (℩𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1539 = wceq 1541 {cab 2709 ∅c0 4280 {csn 4573 ∪ cuni 4856 ℩cio 6435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-sn 4574 df-pr 4576 df-uni 4857 df-iota 6437 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |