Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nuliotaALT Structured version   Visualization version   GIF version

Theorem bj-nuliotaALT 35327
Description: Alternate proof of bj-nuliota 35326. Note that this alternate proof uses the fact that 𝑥𝜑 evaluates to when there is no 𝑥 satisfying 𝜑 (iotanul 6451). This is an implementation detail of the encoding currently used in set.mm and should be avoided. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-nuliotaALT ∅ = (℩𝑥𝑦 ¬ 𝑦𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-nuliotaALT
StepHypRef Expression
1 0ss 4342 . 2 ∅ ⊆ (℩𝑥𝑦 ¬ 𝑦𝑥)
2 iotassuni 6445 . . 3 (℩𝑥𝑦 ¬ 𝑦𝑥) ⊆ {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥}
3 eq0 4289 . . . . . . 7 (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦𝑥)
43bicomi 223 . . . . . 6 (∀𝑦 ¬ 𝑦𝑥𝑥 = ∅)
54abbii 2806 . . . . 5 {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥} = {𝑥𝑥 = ∅}
65unieqi 4864 . . . 4 {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥} = {𝑥𝑥 = ∅}
7 df-sn 4573 . . . . . 6 {∅} = {𝑥𝑥 = ∅}
87eqcomi 2745 . . . . 5 {𝑥𝑥 = ∅} = {∅}
98unieqi 4864 . . . 4 {𝑥𝑥 = ∅} = {∅}
10 0ex 5248 . . . . 5 ∅ ∈ V
1110unisn 4873 . . . 4 {∅} = ∅
126, 9, 113eqtri 2768 . . 3 {𝑥 ∣ ∀𝑦 ¬ 𝑦𝑥} = ∅
132, 12sseqtri 3967 . 2 (℩𝑥𝑦 ¬ 𝑦𝑥) ⊆ ∅
141, 13eqssi 3947 1 ∅ = (℩𝑥𝑦 ¬ 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1538   = wceq 1540  {cab 2713  c0 4268  {csn 4572   cuni 4851  cio 6423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-nul 5247
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-sn 4573  df-pr 4575  df-uni 4852  df-iota 6425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator