Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1039 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 33289. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1039.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj1039.2 | ⊢ (𝜓′ ↔ [𝑗 / 𝑖]𝜓) |
Ref | Expression |
---|---|
bnj1039 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1039.2 | . 2 ⊢ (𝜓′ ↔ [𝑗 / 𝑖]𝜓) | |
2 | vex 3445 | . . 3 ⊢ 𝑗 ∈ V | |
3 | bnj1039.1 | . . . 4 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
4 | nfra1 3263 | . . . 4 ⊢ Ⅎ𝑖∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) | |
5 | 3, 4 | nfxfr 1854 | . . 3 ⊢ Ⅎ𝑖𝜓 |
6 | 2, 5 | sbcgfi 3808 | . 2 ⊢ ([𝑗 / 𝑖]𝜓 ↔ 𝜓) |
7 | 1, 6, 3 | 3bitri 296 | 1 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∀wral 3061 [wsbc 3727 ∪ ciun 4941 suc csuc 6304 ‘cfv 6479 ωcom 7780 predc-bnj14 32967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-v 3443 df-sbc 3728 |
This theorem is referenced by: bnj1128 33269 |
Copyright terms: Public domain | W3C validator |