![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1039 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34646. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1039.1 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj1039.2 | ⊢ (𝜓′ ↔ [𝑗 / 𝑖]𝜓) |
Ref | Expression |
---|---|
bnj1039 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1039.2 | . 2 ⊢ (𝜓′ ↔ [𝑗 / 𝑖]𝜓) | |
2 | vex 3475 | . . 3 ⊢ 𝑗 ∈ V | |
3 | bnj1039.1 | . . . 4 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
4 | nfra1 3277 | . . . 4 ⊢ Ⅎ𝑖∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) | |
5 | 3, 4 | nfxfr 1847 | . . 3 ⊢ Ⅎ𝑖𝜓 |
6 | 2, 5 | sbcgfi 3857 | . 2 ⊢ ([𝑗 / 𝑖]𝜓 ↔ 𝜓) |
7 | 1, 6, 3 | 3bitri 296 | 1 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∀wral 3057 [wsbc 3776 ∪ ciun 4998 suc csuc 6374 ‘cfv 6551 ωcom 7874 predc-bnj14 34324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3058 df-v 3473 df-sbc 3777 |
This theorem is referenced by: bnj1128 34626 |
Copyright terms: Public domain | W3C validator |