Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1034 Structured version   Visualization version   GIF version

Theorem bnj1034 32246
 Description: Technical lemma for bnj69 32286. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1034.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1034.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1034.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1034.4 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
bnj1034.5 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
bnj1034.7 (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))
bnj1034.8 𝐷 = (ω ∖ {∅})
bnj1034.9 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj1034.10 (∃𝑓𝑛𝑖(𝜃𝜏𝜒𝜁) → 𝑧𝐵)
Assertion
Ref Expression
bnj1034 ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝑧,𝐴,𝑓,𝑖,𝑛   𝑧,𝐵   𝐷,𝑖   𝑅,𝑓,𝑖,𝑛,𝑦   𝑧,𝑅   𝑓,𝑋,𝑖,𝑛,𝑦   𝑧,𝑋   𝜏,𝑓,𝑖,𝑛,𝑧   𝜃,𝑓,𝑖,𝑛,𝑧   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓,𝑛)   𝜓(𝑦,𝑧,𝑓,𝑖,𝑛)   𝜒(𝑦,𝑧,𝑓,𝑖,𝑛)   𝜃(𝑦)   𝜏(𝑦)   𝜁(𝑦,𝑧,𝑓,𝑖,𝑛)   𝐵(𝑦,𝑓,𝑖,𝑛)   𝐷(𝑦,𝑧,𝑓,𝑛)   𝐾(𝑦,𝑧,𝑓,𝑖,𝑛)

Proof of Theorem bnj1034
StepHypRef Expression
1 bnj1034.1 . 2 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 bnj1034.2 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj1034.3 . 2 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
4 bnj1034.4 . 2 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
5 bnj1034.5 . 2 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
6 biid 263 . 2 (𝑧 ∈ trCl(𝑋, 𝐴, 𝑅) ↔ 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))
7 bnj1034.7 . 2 (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))
8 bnj1034.8 . 2 𝐷 = (ω ∖ {∅})
9 bnj1034.9 . 2 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
10 bnj1034.10 . 2 (∃𝑓𝑛𝑖(𝜃𝜏𝜒𝜁) → 𝑧𝐵)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10bnj1033 32245 1 ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1083   = wceq 1537  ∃wex 1780   ∈ wcel 2114  {cab 2798  ∀wral 3125  ∃wrex 3126  Vcvv 3470   ∖ cdif 3906   ⊆ wss 3909  ∅c0 4265  {csn 4539  ∪ ciun 4891  suc csuc 6165   Fn wfn 6322  ‘cfv 6327  ωcom 7554   ∧ w-bnj17 31960   predc-bnj14 31962   FrSe w-bnj15 31966   trClc-bnj18 31968   TrFow-bnj19 31970 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rex 3131  df-v 3472  df-in 3916  df-ss 3926  df-iun 4893  df-fn 6330  df-bnj17 31961  df-bnj18 31969 This theorem is referenced by:  bnj1052  32251  bnj1030  32263
 Copyright terms: Public domain W3C validator