Proof of Theorem bnj1172
Step | Hyp | Ref
| Expression |
1 | | bnj1172.96 |
. . 3
⊢
∃𝑧∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) |
2 | | bnj1172.113 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) → (𝜃 ↔ 𝑤 ∈ 𝐴)) |
3 | 2 | imbi1d 341 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) → ((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)) ↔ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) |
4 | 3 | pm5.32i 574 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))) ↔ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) |
5 | 4 | imbi2i 335 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) ↔ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) |
6 | 5 | albii 1825 |
. . . 4
⊢
(∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) ↔ ∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) |
7 | 6 | exbii 1853 |
. . 3
⊢
(∃𝑧∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) ↔ ∃𝑧∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) |
8 | 1, 7 | mpbi 229 |
. 2
⊢
∃𝑧∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) |
9 | | simp3 1136 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐶) |
10 | | bnj1172.3 |
. . . . . . 7
⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) |
11 | 9, 10 | eleqtrdi 2850 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)) |
12 | 11 | elin2d 4137 |
. . . . 5
⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐵) |
13 | 12 | anim1i 614 |
. . . 4
⊢ (((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))) → (𝑧 ∈ 𝐵 ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) |
14 | 13 | imim2i 16 |
. . 3
⊢ (((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) → ((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐵 ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) |
15 | 14 | alimi 1817 |
. 2
⊢
(∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) → ∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐵 ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) |
16 | 8, 15 | bnj101 32681 |
1
⊢
∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐵 ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) |