Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1172 Structured version   Visualization version   GIF version

Theorem bnj1172 34977
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1172.3 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
bnj1172.96 𝑧𝑤((𝜑𝜓) → ((𝜑𝜓𝑧𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
bnj1172.113 ((𝜑𝜓𝑧𝐶) → (𝜃𝑤𝐴))
Assertion
Ref Expression
bnj1172 𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))

Proof of Theorem bnj1172
StepHypRef Expression
1 bnj1172.96 . . 3 𝑧𝑤((𝜑𝜓) → ((𝜑𝜓𝑧𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
2 bnj1172.113 . . . . . . . 8 ((𝜑𝜓𝑧𝐶) → (𝜃𝑤𝐴))
32imbi1d 341 . . . . . . 7 ((𝜑𝜓𝑧𝐶) → ((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)) ↔ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
43pm5.32i 574 . . . . . 6 (((𝜑𝜓𝑧𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))) ↔ ((𝜑𝜓𝑧𝐶) ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
54imbi2i 336 . . . . 5 (((𝜑𝜓) → ((𝜑𝜓𝑧𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))) ↔ ((𝜑𝜓) → ((𝜑𝜓𝑧𝐶) ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))))
65albii 1817 . . . 4 (∀𝑤((𝜑𝜓) → ((𝜑𝜓𝑧𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))) ↔ ∀𝑤((𝜑𝜓) → ((𝜑𝜓𝑧𝐶) ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))))
76exbii 1846 . . 3 (∃𝑧𝑤((𝜑𝜓) → ((𝜑𝜓𝑧𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))) ↔ ∃𝑧𝑤((𝜑𝜓) → ((𝜑𝜓𝑧𝐶) ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))))
81, 7mpbi 230 . 2 𝑧𝑤((𝜑𝜓) → ((𝜑𝜓𝑧𝐶) ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
9 simp3 1138 . . . . . . 7 ((𝜑𝜓𝑧𝐶) → 𝑧𝐶)
10 bnj1172.3 . . . . . . 7 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)
119, 10eleqtrdi 2854 . . . . . 6 ((𝜑𝜓𝑧𝐶) → 𝑧 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵))
1211elin2d 4228 . . . . 5 ((𝜑𝜓𝑧𝐶) → 𝑧𝐵)
1312anim1i 614 . . . 4 (((𝜑𝜓𝑧𝐶) ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
1413imim2i 16 . . 3 (((𝜑𝜓) → ((𝜑𝜓𝑧𝐶) ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))) → ((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))))
1514alimi 1809 . 2 (∀𝑤((𝜑𝜓) → ((𝜑𝜓𝑧𝐶) ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))) → ∀𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))))
168, 15bnj101 34699 1 𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  cin 3975   class class class wbr 5166   trClc-bnj18 34670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-in 3983
This theorem is referenced by:  bnj1190  34984
  Copyright terms: Public domain W3C validator