Proof of Theorem bnj1172
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | bnj1172.96 | . . 3
⊢
∃𝑧∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) | 
| 2 |  | bnj1172.113 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) → (𝜃 ↔ 𝑤 ∈ 𝐴)) | 
| 3 | 2 | imbi1d 341 | . . . . . . 7
⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) → ((𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)) ↔ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) | 
| 4 | 3 | pm5.32i 574 | . . . . . 6
⊢ (((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))) ↔ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) | 
| 5 | 4 | imbi2i 336 | . . . . 5
⊢ (((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) ↔ ((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) | 
| 6 | 5 | albii 1819 | . . . 4
⊢
(∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) ↔ ∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) | 
| 7 | 6 | exbii 1848 | . . 3
⊢
(∃𝑧∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) ↔ ∃𝑧∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) | 
| 8 | 1, 7 | mpbi 230 | . 2
⊢
∃𝑧∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) | 
| 9 |  | simp3 1139 | . . . . . . 7
⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐶) | 
| 10 |  | bnj1172.3 | . . . . . . 7
⊢ 𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵) | 
| 11 | 9, 10 | eleqtrdi 2851 | . . . . . 6
⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)) | 
| 12 | 11 | elin2d 4205 | . . . . 5
⊢ ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐵) | 
| 13 | 12 | anim1i 615 | . . . 4
⊢ (((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))) → (𝑧 ∈ 𝐵 ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) | 
| 14 | 13 | imim2i 16 | . . 3
⊢ (((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) → ((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐵 ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) | 
| 15 | 14 | alimi 1811 | . 2
⊢
(∀𝑤((𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓 ∧ 𝑧 ∈ 𝐶) ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) → ∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐵 ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵))))) | 
| 16 | 8, 15 | bnj101 34737 | 1
⊢
∃𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑧 ∈ 𝐵 ∧ (𝑤 ∈ 𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤 ∈ 𝐵)))) |