Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1171 Structured version   Visualization version   GIF version

Theorem bnj1171 32880
Description: Technical lemma for bnj69 32890. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1171.13 ((𝜑𝜓) → 𝐵𝐴)
bnj1171.129 𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
Assertion
Ref Expression
bnj1171 𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧)))

Proof of Theorem bnj1171
StepHypRef Expression
1 bnj1171.129 . 2 𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
2 bnj1171.13 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐵𝐴)
32sseld 3916 . . . . . . . . . 10 ((𝜑𝜓) → (𝑤𝐵𝑤𝐴))
43pm4.71rd 562 . . . . . . . . 9 ((𝜑𝜓) → (𝑤𝐵 ↔ (𝑤𝐴𝑤𝐵)))
54imbi1d 341 . . . . . . . 8 ((𝜑𝜓) → ((𝑤𝐵 → ¬ 𝑤𝑅𝑧) ↔ ((𝑤𝐴𝑤𝐵) → ¬ 𝑤𝑅𝑧)))
6 impexp 450 . . . . . . . 8 (((𝑤𝐴𝑤𝐵) → ¬ 𝑤𝑅𝑧) ↔ (𝑤𝐴 → (𝑤𝐵 → ¬ 𝑤𝑅𝑧)))
75, 6bitrdi 286 . . . . . . 7 ((𝜑𝜓) → ((𝑤𝐵 → ¬ 𝑤𝑅𝑧) ↔ (𝑤𝐴 → (𝑤𝐵 → ¬ 𝑤𝑅𝑧))))
8 con2b 359 . . . . . . . 8 ((𝑤𝑅𝑧 → ¬ 𝑤𝐵) ↔ (𝑤𝐵 → ¬ 𝑤𝑅𝑧))
98imbi2i 335 . . . . . . 7 ((𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)) ↔ (𝑤𝐴 → (𝑤𝐵 → ¬ 𝑤𝑅𝑧)))
107, 9bitr4di 288 . . . . . 6 ((𝜑𝜓) → ((𝑤𝐵 → ¬ 𝑤𝑅𝑧) ↔ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
1110anbi2d 628 . . . . 5 ((𝜑𝜓) → ((𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧)) ↔ (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))))
1211pm5.74i 270 . . . 4 (((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧))) ↔ ((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))))
1312albii 1823 . . 3 (∀𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧))) ↔ ∀𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))))
1413exbii 1851 . 2 (∃𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧))) ↔ ∃𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵)))))
151, 14mpbir 230 1 𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1537  wex 1783  wcel 2108  wss 3883   class class class wbr 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  bnj1190  32888
  Copyright terms: Public domain W3C validator