Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1190 Structured version   Visualization version   GIF version

Theorem bnj1190 35039
Description: Technical lemma for bnj69 35041. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1190.1 (𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))
bnj1190.2 (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
Assertion
Ref Expression
bnj1190 ((𝜑𝜓) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
Distinct variable groups:   𝑤,𝐵,𝑥,𝑧   𝑦,𝐵,𝑥,𝑧   𝑤,𝑅,𝑥,𝑧   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem bnj1190
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1190.1 . . . . . . 7 (𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))
21simp2bi 1146 . . . . . 6 (𝜑𝐵𝐴)
32adantr 480 . . . . 5 ((𝜑𝜓) → 𝐵𝐴)
4 eqid 2735 . . . . . 6 ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) = ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵)
5 bnj1190.2 . . . . . . . . 9 (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
61simp1bi 1145 . . . . . . . . . 10 (𝜑𝑅 FrSe 𝐴)
76adantr 480 . . . . . . . . 9 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
85simp1bi 1145 . . . . . . . . . 10 (𝜓𝑥𝐵)
9 ssel2 3953 . . . . . . . . . 10 ((𝐵𝐴𝑥𝐵) → 𝑥𝐴)
102, 8, 9syl2an 596 . . . . . . . . 9 ((𝜑𝜓) → 𝑥𝐴)
115, 4, 7, 3, 10bnj1177 35037 . . . . . . . 8 ((𝜑𝜓) → (𝑅 Fr 𝐴 ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴 ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅ ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ∈ V))
12 bnj1154 35030 . . . . . . . 8 ((𝑅 Fr 𝐴 ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴 ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅ ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ∈ V) → ∃𝑢 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵)∀𝑣 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ¬ 𝑣𝑅𝑢)
1311, 12bnj1176 35036 . . . . . . 7 𝑢𝑣((𝜑𝜓) → (𝑢 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ∧ (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴) → (𝑣𝑅𝑢 → ¬ 𝑣 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵)))))
14 biid 261 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ (𝑣𝐴𝑣𝑅𝑢)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ (𝑣𝐴𝑣𝑅𝑢)))
15 biid 261 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴) ↔ ((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴))
164, 14, 15bnj1175 35035 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴) → (𝑣𝑅𝑢𝑣 ∈ trCl(𝑥, 𝐴, 𝑅)))
174, 13, 16bnj1174 35034 . . . . . 6 𝑢𝑣((𝜑𝜓) → ((𝜑𝜓𝑢 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵)) ∧ (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴) → (𝑣𝑅𝑢 → ¬ 𝑣𝐵))))
184, 15, 7, 10bnj1173 35033 . . . . . 6 ((𝜑𝜓𝑢 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵)) → (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴) ↔ 𝑣𝐴))
194, 17, 18bnj1172 35032 . . . . 5 𝑢𝑣((𝜑𝜓) → (𝑢𝐵 ∧ (𝑣𝐴 → (𝑣𝑅𝑢 → ¬ 𝑣𝐵))))
203, 19bnj1171 35031 . . . 4 𝑢𝑣((𝜑𝜓) → (𝑢𝐵 ∧ (𝑣𝐵 → ¬ 𝑣𝑅𝑢)))
2120bnj1186 35038 . . 3 ((𝜑𝜓) → ∃𝑢𝐵𝑣𝐵 ¬ 𝑣𝑅𝑢)
2221bnj1185 34824 . 2 ((𝜑𝜓) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
2322bnj1185 34824 1 ((𝜑𝜓) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2108  wne 2932  wral 3051  wrex 3060  cin 3925  wss 3926  c0 4308   class class class wbr 5119   FrSe w-bnj15 34723   trClc-bnj18 34725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-reg 9606  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1o 8480  df-bnj17 34718  df-bnj14 34720  df-bnj13 34722  df-bnj15 34724  df-bnj18 34726  df-bnj19 34728
This theorem is referenced by:  bnj1189  35040
  Copyright terms: Public domain W3C validator