Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1190 Structured version   Visualization version   GIF version

Theorem bnj1190 35005
Description: Technical lemma for bnj69 35007. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1190.1 (𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))
bnj1190.2 (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
Assertion
Ref Expression
bnj1190 ((𝜑𝜓) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
Distinct variable groups:   𝑤,𝐵,𝑥,𝑧   𝑦,𝐵,𝑥,𝑧   𝑤,𝑅,𝑥,𝑧   𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem bnj1190
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1190.1 . . . . . . 7 (𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))
21simp2bi 1146 . . . . . 6 (𝜑𝐵𝐴)
32adantr 480 . . . . 5 ((𝜑𝜓) → 𝐵𝐴)
4 eqid 2730 . . . . . 6 ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) = ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵)
5 bnj1190.2 . . . . . . . . 9 (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))
61simp1bi 1145 . . . . . . . . . 10 (𝜑𝑅 FrSe 𝐴)
76adantr 480 . . . . . . . . 9 ((𝜑𝜓) → 𝑅 FrSe 𝐴)
85simp1bi 1145 . . . . . . . . . 10 (𝜓𝑥𝐵)
9 ssel2 3944 . . . . . . . . . 10 ((𝐵𝐴𝑥𝐵) → 𝑥𝐴)
102, 8, 9syl2an 596 . . . . . . . . 9 ((𝜑𝜓) → 𝑥𝐴)
115, 4, 7, 3, 10bnj1177 35003 . . . . . . . 8 ((𝜑𝜓) → (𝑅 Fr 𝐴 ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴 ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅ ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ∈ V))
12 bnj1154 34996 . . . . . . . 8 ((𝑅 Fr 𝐴 ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ⊆ 𝐴 ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ≠ ∅ ∧ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ∈ V) → ∃𝑢 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵)∀𝑣 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ¬ 𝑣𝑅𝑢)
1311, 12bnj1176 35002 . . . . . . 7 𝑢𝑣((𝜑𝜓) → (𝑢 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵) ∧ (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴) → (𝑣𝑅𝑢 → ¬ 𝑣 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵)))))
14 biid 261 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ (𝑣𝐴𝑣𝑅𝑢)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ (𝑣𝐴𝑣𝑅𝑢)))
15 biid 261 . . . . . . . 8 (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴) ↔ ((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴))
164, 14, 15bnj1175 35001 . . . . . . 7 (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴) → (𝑣𝑅𝑢𝑣 ∈ trCl(𝑥, 𝐴, 𝑅)))
174, 13, 16bnj1174 35000 . . . . . 6 𝑢𝑣((𝜑𝜓) → ((𝜑𝜓𝑢 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵)) ∧ (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴) → (𝑣𝑅𝑢 → ¬ 𝑣𝐵))))
184, 15, 7, 10bnj1173 34999 . . . . . 6 ((𝜑𝜓𝑢 ∈ ( trCl(𝑥, 𝐴, 𝑅) ∩ 𝐵)) → (((𝑅 FrSe 𝐴𝑥𝐴𝑢 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑢𝐴) ∧ 𝑣𝐴) ↔ 𝑣𝐴))
194, 17, 18bnj1172 34998 . . . . 5 𝑢𝑣((𝜑𝜓) → (𝑢𝐵 ∧ (𝑣𝐴 → (𝑣𝑅𝑢 → ¬ 𝑣𝐵))))
203, 19bnj1171 34997 . . . 4 𝑢𝑣((𝜑𝜓) → (𝑢𝐵 ∧ (𝑣𝐵 → ¬ 𝑣𝑅𝑢)))
2120bnj1186 35004 . . 3 ((𝜑𝜓) → ∃𝑢𝐵𝑣𝐵 ¬ 𝑣𝑅𝑢)
2221bnj1185 34790 . 2 ((𝜑𝜓) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
2322bnj1185 34790 1 ((𝜑𝜓) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wne 2926  wral 3045  wrex 3054  cin 3916  wss 3917  c0 4299   class class class wbr 5110   FrSe w-bnj15 34689   trClc-bnj18 34691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-bnj17 34684  df-bnj14 34686  df-bnj13 34688  df-bnj15 34690  df-bnj18 34692  df-bnj19 34694
This theorem is referenced by:  bnj1189  35006
  Copyright terms: Public domain W3C validator