![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1213 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1213.1 | ⊢ 𝐴 ⊆ 𝐵 |
bnj1213.2 | ⊢ (𝜃 → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
bnj1213 | ⊢ (𝜃 → 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1213.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | bnj1213.2 | . 2 ⊢ (𝜃 → 𝑥 ∈ 𝐴) | |
3 | 1, 2 | sselid 3977 | 1 ⊢ (𝜃 → 𝑥 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1775 df-clel 2803 df-ss 3964 |
This theorem is referenced by: bnj1212 34644 bnj1173 34847 bnj1296 34866 bnj1408 34881 bnj1452 34897 bnj1523 34916 |
Copyright terms: Public domain | W3C validator |