Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1212 Structured version   Visualization version   GIF version

Theorem bnj1212 34811
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1212.1 𝐵 = {𝑥𝐴𝜑}
bnj1212.2 (𝜃 ↔ (𝜒𝑥𝐵𝜏))
Assertion
Ref Expression
bnj1212 (𝜃𝑥𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜒(𝑥)   𝜃(𝑥)   𝜏(𝑥)   𝐵(𝑥)

Proof of Theorem bnj1212
StepHypRef Expression
1 bnj1212.1 . . 3 𝐵 = {𝑥𝐴𝜑}
21ssrab3 4029 . 2 𝐵𝐴
3 bnj1212.2 . . 3 (𝜃 ↔ (𝜒𝑥𝐵𝜏))
43simp2bi 1146 . 2 (𝜃𝑥𝐵)
52, 4bnj1213 34810 1 (𝜃𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  {crab 3395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-ss 3914
This theorem is referenced by:  bnj1204  35024  bnj1296  35033  bnj1415  35050  bnj1421  35054  bnj1442  35061  bnj1452  35064  bnj1489  35068
  Copyright terms: Public domain W3C validator