Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1212 Structured version   Visualization version   GIF version

Theorem bnj1212 32779
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1212.1 𝐵 = {𝑥𝐴𝜑}
bnj1212.2 (𝜃 ↔ (𝜒𝑥𝐵𝜏))
Assertion
Ref Expression
bnj1212 (𝜃𝑥𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜒(𝑥)   𝜃(𝑥)   𝜏(𝑥)   𝐵(𝑥)

Proof of Theorem bnj1212
StepHypRef Expression
1 bnj1212.1 . . 3 𝐵 = {𝑥𝐴𝜑}
21ssrab3 4015 . 2 𝐵𝐴
3 bnj1212.2 . . 3 (𝜃 ↔ (𝜒𝑥𝐵𝜏))
43simp2bi 1145 . 2 (𝜃𝑥𝐵)
52, 4bnj1213 32778 1 (𝜃𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  {crab 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  bnj1204  32992  bnj1296  33001  bnj1415  33018  bnj1421  33022  bnj1442  33029  bnj1452  33032  bnj1489  33036
  Copyright terms: Public domain W3C validator