Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1212 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1212.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
bnj1212.2 | ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜏)) |
Ref | Expression |
---|---|
bnj1212 | ⊢ (𝜃 → 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1212.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
2 | 1 | ssrab3 4011 | . 2 ⊢ 𝐵 ⊆ 𝐴 |
3 | bnj1212.2 | . . 3 ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜏)) | |
4 | 3 | simp2bi 1144 | . 2 ⊢ (𝜃 → 𝑥 ∈ 𝐵) |
5 | 2, 4 | bnj1213 32678 | 1 ⊢ (𝜃 → 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: bnj1204 32892 bnj1296 32901 bnj1415 32918 bnj1421 32922 bnj1442 32929 bnj1452 32932 bnj1489 32936 |
Copyright terms: Public domain | W3C validator |