![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1212 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1212.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
bnj1212.2 | ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜏)) |
Ref | Expression |
---|---|
bnj1212 | ⊢ (𝜃 → 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1212.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
2 | 1 | ssrab3 4105 | . 2 ⊢ 𝐵 ⊆ 𝐴 |
3 | bnj1212.2 | . . 3 ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜏)) | |
4 | 3 | simp2bi 1146 | . 2 ⊢ (𝜃 → 𝑥 ∈ 𝐵) |
5 | 2, 4 | bnj1213 34774 | 1 ⊢ (𝜃 → 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {crab 3443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 |
This theorem is referenced by: bnj1204 34988 bnj1296 34997 bnj1415 35014 bnj1421 35018 bnj1442 35025 bnj1452 35028 bnj1489 35032 |
Copyright terms: Public domain | W3C validator |