| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1212 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1212.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
| bnj1212.2 | ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜏)) |
| Ref | Expression |
|---|---|
| bnj1212 | ⊢ (𝜃 → 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1212.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
| 2 | 1 | ssrab3 4057 | . 2 ⊢ 𝐵 ⊆ 𝐴 |
| 3 | bnj1212.2 | . . 3 ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜏)) | |
| 4 | 3 | simp2bi 1146 | . 2 ⊢ (𝜃 → 𝑥 ∈ 𝐵) |
| 5 | 2, 4 | bnj1213 34829 | 1 ⊢ (𝜃 → 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {crab 3415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-ss 3943 |
| This theorem is referenced by: bnj1204 35043 bnj1296 35052 bnj1415 35069 bnj1421 35073 bnj1442 35080 bnj1452 35083 bnj1489 35087 |
| Copyright terms: Public domain | W3C validator |