| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1294 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1294.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| bnj1294.2 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| bnj1294 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1294.2 | . 2 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 2 | bnj1294.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
| 3 | df-ral 3062 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 4 | sp 2183 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐴 → 𝜓)) | |
| 5 | 4 | impcom 407 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) → 𝜓) |
| 6 | 3, 5 | sylan2b 594 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜓) → 𝜓) |
| 7 | 1, 2, 6 | syl2anc 584 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∈ wcel 2108 ∀wral 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3062 |
| This theorem is referenced by: bnj1379 34844 bnj1121 34999 bnj1279 35032 bnj1286 35033 bnj1296 35035 bnj1421 35056 bnj1489 35070 bnj1501 35081 bnj1523 35085 |
| Copyright terms: Public domain | W3C validator |