Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1294 Structured version   Visualization version   GIF version

Theorem bnj1294 32776
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1294.1 (𝜑 → ∀𝑥𝐴 𝜓)
bnj1294.2 (𝜑𝑥𝐴)
Assertion
Ref Expression
bnj1294 (𝜑𝜓)

Proof of Theorem bnj1294
StepHypRef Expression
1 bnj1294.2 . 2 (𝜑𝑥𝐴)
2 bnj1294.1 . 2 (𝜑 → ∀𝑥𝐴 𝜓)
3 df-ral 3070 . . 3 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
4 sp 2179 . . . 4 (∀𝑥(𝑥𝐴𝜓) → (𝑥𝐴𝜓))
54impcom 407 . . 3 ((𝑥𝐴 ∧ ∀𝑥(𝑥𝐴𝜓)) → 𝜓)
63, 5sylan2b 593 . 2 ((𝑥𝐴 ∧ ∀𝑥𝐴 𝜓) → 𝜓)
71, 2, 6syl2anc 583 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wcel 2109  wral 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-ral 3070
This theorem is referenced by:  bnj1379  32789  bnj1121  32944  bnj1279  32977  bnj1286  32978  bnj1296  32980  bnj1421  33001  bnj1489  33015  bnj1501  33026  bnj1523  33030
  Copyright terms: Public domain W3C validator