![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1294 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1294.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
bnj1294.2 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
bnj1294 | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1294.2 | . 2 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | bnj1294.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
3 | df-ral 3094 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
4 | sp 2217 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐴 → 𝜓)) | |
5 | 4 | impcom 397 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) → 𝜓) |
6 | 3, 5 | sylan2b 588 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝜓) → 𝜓) |
7 | 1, 2, 6 | syl2anc 580 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1651 ∈ wcel 2157 ∀wral 3089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-12 2213 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-ral 3094 |
This theorem is referenced by: bnj1379 31418 bnj1121 31570 bnj1279 31603 bnj1286 31604 bnj1296 31606 bnj1421 31627 bnj1450 31635 bnj1489 31641 bnj1501 31652 bnj1523 31656 |
Copyright terms: Public domain | W3C validator |