Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1423 Structured version   Visualization version   GIF version

Theorem bnj1423 33031
Description: Technical lemma for bnj60 33042. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1423.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1423.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1423.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1423.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1423.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1423.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1423.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1423.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1423.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1423.10 𝑃 = 𝐻
bnj1423.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1423.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1423.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
bnj1423.14 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
bnj1423.15 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
bnj1423.16 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj1423 (𝜒 → ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥,𝑦,𝑧   𝐵,𝑓   𝑦,𝐷   𝐸,𝑑,𝑓,𝑦   𝐺,𝑑,𝑓,𝑥,𝑦,𝑧   𝑅,𝑑,𝑓,𝑥,𝑦,𝑧   𝑧,𝑌   𝜒,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐸(𝑥,𝑧)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1423
StepHypRef Expression
1 bnj1423.1 . . . 4 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 bnj1423.2 . . . 4 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
3 bnj1423.3 . . . 4 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
4 bnj1423.4 . . . 4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
5 bnj1423.5 . . . 4 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
6 bnj1423.6 . . . 4 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
7 bnj1423.7 . . . 4 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
8 bnj1423.8 . . . 4 (𝜏′[𝑦 / 𝑥]𝜏)
9 bnj1423.9 . . . 4 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
10 bnj1423.10 . . . 4 𝑃 = 𝐻
11 bnj1423.11 . . . 4 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
12 bnj1423.12 . . . 4 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
13 bnj1423.13 . . . 4 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
14 bnj1423.14 . . . 4 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
15 bnj1423.15 . . . 4 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
16 bnj1423.16 . . . 4 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
17 biid 260 . . . 4 ((𝜒𝑧𝐸) ↔ (𝜒𝑧𝐸))
18 biid 260 . . . 4 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) ↔ ((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18bnj1442 33029 . . 3 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → (𝑄𝑧) = (𝐺𝑊))
20 biid 260 . . . 4 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ↔ ((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
21 biid 260 . . . 4 ((((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓) ↔ (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓))
22 biid 260 . . . 4 (((((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ ((((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
23 biid 260 . . . 4 ((((((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ (((((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
24 eqid 2738 . . . 4 𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩ = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24bnj1450 33030 . . 3 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → (𝑄𝑧) = (𝐺𝑊))
2614bnj1424 32818 . . . 4 (𝑧𝐸 → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
2726adantl 482 . . 3 ((𝜒𝑧𝐸) → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
2819, 25, 27mpjaodan 956 . 2 ((𝜒𝑧𝐸) → (𝑄𝑧) = (𝐺𝑊))
2928ralrimiva 3103 1 (𝜒 → ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  {crab 3068  [wsbc 3716  cun 3885  wss 3887  c0 4256  {csn 4561  cop 4567   cuni 4839   class class class wbr 5074  dom cdm 5589  cres 5591   Fn wfn 6428  cfv 6433  w-bnj17 32665   predc-bnj14 32667   FrSe w-bnj15 32671   trClc-bnj18 32673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-bnj17 32666  df-bnj14 32668  df-bnj13 32670  df-bnj15 32672  df-bnj18 32674
This theorem is referenced by:  bnj1312  33038
  Copyright terms: Public domain W3C validator