| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1423 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35045. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1423.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1423.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1423.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1423.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| bnj1423.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| bnj1423.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
| bnj1423.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
| bnj1423.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
| bnj1423.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| bnj1423.10 | ⊢ 𝑃 = ∪ 𝐻 |
| bnj1423.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1423.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
| bnj1423.13 | ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 |
| bnj1423.14 | ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
| bnj1423.15 | ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) |
| bnj1423.16 | ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
| Ref | Expression |
|---|---|
| bnj1423 | ⊢ (𝜒 → ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1423.1 | . . . 4 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
| 2 | bnj1423.2 | . . . 4 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 3 | bnj1423.3 | . . . 4 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 4 | bnj1423.4 | . . . 4 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
| 5 | bnj1423.5 | . . . 4 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
| 6 | bnj1423.6 | . . . 4 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
| 7 | bnj1423.7 | . . . 4 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
| 8 | bnj1423.8 | . . . 4 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
| 9 | bnj1423.9 | . . . 4 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
| 10 | bnj1423.10 | . . . 4 ⊢ 𝑃 = ∪ 𝐻 | |
| 11 | bnj1423.11 | . . . 4 ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 12 | bnj1423.12 | . . . 4 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
| 13 | bnj1423.13 | . . . 4 ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 | |
| 14 | bnj1423.14 | . . . 4 ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) | |
| 15 | bnj1423.15 | . . . 4 ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) | |
| 16 | bnj1423.16 | . . . 4 ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) | |
| 17 | biid 261 | . . . 4 ⊢ ((𝜒 ∧ 𝑧 ∈ 𝐸) ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) | |
| 18 | biid 261 | . . . 4 ⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) ↔ ((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥})) | |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | bnj1442 35032 | . . 3 ⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) → (𝑄‘𝑧) = (𝐺‘𝑊)) |
| 20 | biid 261 | . . . 4 ⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ↔ ((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) | |
| 21 | biid 261 | . . . 4 ⊢ ((((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) ↔ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓)) | |
| 22 | biid 261 | . . . 4 ⊢ (((((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ ((((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) | |
| 23 | biid 261 | . . . 4 ⊢ ((((((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ (((((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) | |
| 24 | eqid 2729 | . . . 4 ⊢ 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉 = 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉 | |
| 25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24 | bnj1450 35033 | . . 3 ⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → (𝑄‘𝑧) = (𝐺‘𝑊)) |
| 26 | 14 | bnj1424 34821 | . . . 4 ⊢ (𝑧 ∈ 𝐸 → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) |
| 27 | 26 | adantl 481 | . . 3 ⊢ ((𝜒 ∧ 𝑧 ∈ 𝐸) → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) |
| 28 | 19, 25, 27 | mpjaodan 960 | . 2 ⊢ ((𝜒 ∧ 𝑧 ∈ 𝐸) → (𝑄‘𝑧) = (𝐺‘𝑊)) |
| 29 | 28 | ralrimiva 3121 | 1 ⊢ (𝜒 → ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3394 [wsbc 3742 ∪ cun 3901 ⊆ wss 3903 ∅c0 4284 {csn 4577 〈cop 4583 ∪ cuni 4858 class class class wbr 5092 dom cdm 5619 ↾ cres 5621 Fn wfn 6477 ‘cfv 6482 ∧ w-bnj17 34669 predc-bnj14 34671 FrSe w-bnj15 34675 trClc-bnj18 34677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-reg 9484 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-om 7800 df-1o 8388 df-bnj17 34670 df-bnj14 34672 df-bnj13 34674 df-bnj15 34676 df-bnj18 34678 |
| This theorem is referenced by: bnj1312 35041 |
| Copyright terms: Public domain | W3C validator |