![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1423 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 31647. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1423.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1423.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1423.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1423.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1423.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1423.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1423.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1423.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1423.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1423.10 | ⊢ 𝑃 = ∪ 𝐻 |
bnj1423.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1423.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
bnj1423.13 | ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 |
bnj1423.14 | ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
bnj1423.15 | ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) |
bnj1423.16 | ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj1423 | ⊢ (𝜒 → ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1423.1 | . . . 4 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
2 | bnj1423.2 | . . . 4 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
3 | bnj1423.3 | . . . 4 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
4 | bnj1423.4 | . . . 4 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
5 | bnj1423.5 | . . . 4 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
6 | bnj1423.6 | . . . 4 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
7 | bnj1423.7 | . . . 4 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
8 | bnj1423.8 | . . . 4 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
9 | bnj1423.9 | . . . 4 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
10 | bnj1423.10 | . . . 4 ⊢ 𝑃 = ∪ 𝐻 | |
11 | bnj1423.11 | . . . 4 ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
12 | bnj1423.12 | . . . 4 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
13 | bnj1423.13 | . . . 4 ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 | |
14 | bnj1423.14 | . . . 4 ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) | |
15 | bnj1423.15 | . . . 4 ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) | |
16 | bnj1423.16 | . . . 4 ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) | |
17 | biid 253 | . . . 4 ⊢ ((𝜒 ∧ 𝑧 ∈ 𝐸) ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) | |
18 | biid 253 | . . . 4 ⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) ↔ ((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥})) | |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | bnj1442 31634 | . . 3 ⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ {𝑥}) → (𝑄‘𝑧) = (𝐺‘𝑊)) |
20 | biid 253 | . . . 4 ⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ↔ ((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) | |
21 | biid 253 | . . . 4 ⊢ ((((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) ↔ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓)) | |
22 | biid 253 | . . . 4 ⊢ (((((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ ((((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) | |
23 | biid 253 | . . . 4 ⊢ ((((((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ (((((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) | |
24 | eqid 2799 | . . . 4 ⊢ 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉 = 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉 | |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24 | bnj1450 31635 | . . 3 ⊢ (((𝜒 ∧ 𝑧 ∈ 𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → (𝑄‘𝑧) = (𝐺‘𝑊)) |
26 | 14 | bnj1424 31426 | . . . 4 ⊢ (𝑧 ∈ 𝐸 → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) |
27 | 26 | adantl 474 | . . 3 ⊢ ((𝜒 ∧ 𝑧 ∈ 𝐸) → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) |
28 | 19, 25, 27 | mpjaodan 982 | . 2 ⊢ ((𝜒 ∧ 𝑧 ∈ 𝐸) → (𝑄‘𝑧) = (𝐺‘𝑊)) |
29 | 28 | ralrimiva 3147 | 1 ⊢ (𝜒 → ∀𝑧 ∈ 𝐸 (𝑄‘𝑧) = (𝐺‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∨ wo 874 ∧ w3a 1108 = wceq 1653 ∃wex 1875 ∈ wcel 2157 {cab 2785 ≠ wne 2971 ∀wral 3089 ∃wrex 3090 {crab 3093 [wsbc 3633 ∪ cun 3767 ⊆ wss 3769 ∅c0 4115 {csn 4368 〈cop 4374 ∪ cuni 4628 class class class wbr 4843 dom cdm 5312 ↾ cres 5314 Fn wfn 6096 ‘cfv 6101 ∧ w-bnj17 31272 predc-bnj14 31274 FrSe w-bnj15 31278 trClc-bnj18 31280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-reg 8739 ax-inf2 8788 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-om 7300 df-1o 7799 df-bnj17 31273 df-bnj14 31275 df-bnj13 31277 df-bnj15 31279 df-bnj18 31281 |
This theorem is referenced by: bnj1312 31643 |
Copyright terms: Public domain | W3C validator |