Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1423 Structured version   Visualization version   GIF version

Theorem bnj1423 32931
Description: Technical lemma for bnj60 32942. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1423.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1423.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1423.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1423.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1423.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1423.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1423.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1423.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1423.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1423.10 𝑃 = 𝐻
bnj1423.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1423.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1423.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
bnj1423.14 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
bnj1423.15 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
bnj1423.16 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj1423 (𝜒 → ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥,𝑦,𝑧   𝐵,𝑓   𝑦,𝐷   𝐸,𝑑,𝑓,𝑦   𝐺,𝑑,𝑓,𝑥,𝑦,𝑧   𝑅,𝑑,𝑓,𝑥,𝑦,𝑧   𝑧,𝑌   𝜒,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐸(𝑥,𝑧)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1423
StepHypRef Expression
1 bnj1423.1 . . . 4 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 bnj1423.2 . . . 4 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
3 bnj1423.3 . . . 4 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
4 bnj1423.4 . . . 4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
5 bnj1423.5 . . . 4 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
6 bnj1423.6 . . . 4 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
7 bnj1423.7 . . . 4 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
8 bnj1423.8 . . . 4 (𝜏′[𝑦 / 𝑥]𝜏)
9 bnj1423.9 . . . 4 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
10 bnj1423.10 . . . 4 𝑃 = 𝐻
11 bnj1423.11 . . . 4 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
12 bnj1423.12 . . . 4 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
13 bnj1423.13 . . . 4 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
14 bnj1423.14 . . . 4 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
15 bnj1423.15 . . . 4 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
16 bnj1423.16 . . . 4 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
17 biid 260 . . . 4 ((𝜒𝑧𝐸) ↔ (𝜒𝑧𝐸))
18 biid 260 . . . 4 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) ↔ ((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18bnj1442 32929 . . 3 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ {𝑥}) → (𝑄𝑧) = (𝐺𝑊))
20 biid 260 . . . 4 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ↔ ((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
21 biid 260 . . . 4 ((((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓) ↔ (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓))
22 biid 260 . . . 4 (((((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ ((((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
23 biid 260 . . . 4 ((((((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ (((((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) ∧ 𝑓𝐻𝑧 ∈ dom 𝑓) ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ∧ 𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
24 eqid 2738 . . . 4 𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩ = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24bnj1450 32930 . . 3 (((𝜒𝑧𝐸) ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) → (𝑄𝑧) = (𝐺𝑊))
2614bnj1424 32718 . . . 4 (𝑧𝐸 → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
2726adantl 481 . . 3 ((𝜒𝑧𝐸) → (𝑧 ∈ {𝑥} ∨ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
2819, 25, 27mpjaodan 955 . 2 ((𝜒𝑧𝐸) → (𝑄𝑧) = (𝐺𝑊))
2928ralrimiva 3107 1 (𝜒 → ∀𝑧𝐸 (𝑄𝑧) = (𝐺𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  {crab 3067  [wsbc 3711  cun 3881  wss 3883  c0 4253  {csn 4558  cop 4564   cuni 4836   class class class wbr 5070  dom cdm 5580  cres 5582   Fn wfn 6413  cfv 6418  w-bnj17 32565   predc-bnj14 32567   FrSe w-bnj15 32571   trClc-bnj18 32573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-bnj17 32566  df-bnj14 32568  df-bnj13 32570  df-bnj15 32572  df-bnj18 32574
This theorem is referenced by:  bnj1312  32938
  Copyright terms: Public domain W3C validator