Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1418 Structured version   Visualization version   GIF version

Theorem bnj1418 34579
Description: Property of pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1418 (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑦𝑅𝑥)

Proof of Theorem bnj1418
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 breq1 5144 . 2 (𝑧 = 𝑦 → (𝑧𝑅𝑥𝑦𝑅𝑥))
2 df-bnj14 34228 . . 3 pred(𝑥, 𝐴, 𝑅) = {𝑧𝐴𝑧𝑅𝑥}
32bnj1538 34394 . 2 (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑧𝑅𝑥)
41, 3vtoclga 3560 1 (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098   class class class wbr 5141   predc-bnj14 34227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-bnj14 34228
This theorem is referenced by:  bnj1417  34580  bnj1523  34610
  Copyright terms: Public domain W3C validator