Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1418 Structured version   Visualization version   GIF version

Theorem bnj1418 31625
Description: Property of pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1418 (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑦𝑅𝑥)

Proof of Theorem bnj1418
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 breq1 4846 . 2 (𝑧 = 𝑦 → (𝑧𝑅𝑥𝑦𝑅𝑥))
2 df-bnj14 31275 . . 3 pred(𝑥, 𝐴, 𝑅) = {𝑧𝐴𝑧𝑅𝑥}
32bnj1538 31442 . 2 (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑧𝑅𝑥)
41, 3vtoclga 3460 1 (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157   class class class wbr 4843   predc-bnj14 31274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-br 4844  df-bnj14 31275
This theorem is referenced by:  bnj1417  31626  bnj1523  31656
  Copyright terms: Public domain W3C validator