Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1418 Structured version   Visualization version   GIF version

Theorem bnj1418 35016
Description: Property of pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1418 (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑦𝑅𝑥)

Proof of Theorem bnj1418
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 breq1 5169 . 2 (𝑧 = 𝑦 → (𝑧𝑅𝑥𝑦𝑅𝑥))
2 df-bnj14 34665 . . 3 pred(𝑥, 𝐴, 𝑅) = {𝑧𝐴𝑧𝑅𝑥}
32bnj1538 34831 . 2 (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑧𝑅𝑥)
41, 3vtoclga 3589 1 (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5166   predc-bnj14 34664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-bnj14 34665
This theorem is referenced by:  bnj1417  35017  bnj1523  35047
  Copyright terms: Public domain W3C validator