Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1418 | Structured version Visualization version GIF version |
Description: Property of pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1418 | ⊢ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑦𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5081 | . 2 ⊢ (𝑧 = 𝑦 → (𝑧𝑅𝑥 ↔ 𝑦𝑅𝑥)) | |
2 | df-bnj14 32647 | . . 3 ⊢ pred(𝑥, 𝐴, 𝑅) = {𝑧 ∈ 𝐴 ∣ 𝑧𝑅𝑥} | |
3 | 2 | bnj1538 32814 | . 2 ⊢ (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑧𝑅𝑥) |
4 | 1, 3 | vtoclga 3511 | 1 ⊢ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑦𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5078 predc-bnj14 32646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-bnj14 32647 |
This theorem is referenced by: bnj1417 33000 bnj1523 33030 |
Copyright terms: Public domain | W3C validator |