Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1536 Structured version   Visualization version   GIF version

Theorem bnj1536 34847
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1536.1 (𝜑𝐹 Fn 𝐴)
bnj1536.2 (𝜑𝐺 Fn 𝐴)
bnj1536.3 (𝜑𝐵𝐴)
bnj1536.4 (𝜑 → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
Assertion
Ref Expression
bnj1536 (𝜑 → (𝐹𝐵) = (𝐺𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem bnj1536
StepHypRef Expression
1 bnj1536.4 . 2 (𝜑 → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
2 bnj1536.1 . . 3 (𝜑𝐹 Fn 𝐴)
3 bnj1536.2 . . 3 (𝜑𝐺 Fn 𝐴)
4 bnj1536.3 . . 3 (𝜑𝐵𝐴)
5 fvreseq 7060 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
62, 3, 4, 5syl21anc 838 . 2 (𝜑 → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
71, 6mpbird 257 1 (𝜑 → (𝐹𝐵) = (𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wral 3059  wss 3963  cres 5691   Fn wfn 6558  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571
This theorem is referenced by:  bnj1523  35064
  Copyright terms: Public domain W3C validator