Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1536 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1536.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
bnj1536.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
bnj1536.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
bnj1536.4 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥)) |
Ref | Expression |
---|---|
bnj1536 | ⊢ (𝜑 → (𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1536.4 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥)) | |
2 | bnj1536.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
3 | bnj1536.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
4 | bnj1536.3 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
5 | fvreseq 6899 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
6 | 2, 3, 4, 5 | syl21anc 834 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
7 | 1, 6 | mpbird 256 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∀wral 3063 ⊆ wss 3883 ↾ cres 5582 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: bnj1523 32951 |
Copyright terms: Public domain | W3C validator |