Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1536 Structured version   Visualization version   GIF version

Theorem bnj1536 34844
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1536.1 (𝜑𝐹 Fn 𝐴)
bnj1536.2 (𝜑𝐺 Fn 𝐴)
bnj1536.3 (𝜑𝐵𝐴)
bnj1536.4 (𝜑 → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
Assertion
Ref Expression
bnj1536 (𝜑 → (𝐹𝐵) = (𝐺𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem bnj1536
StepHypRef Expression
1 bnj1536.4 . 2 (𝜑 → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
2 bnj1536.1 . . 3 (𝜑𝐹 Fn 𝐴)
3 bnj1536.2 . . 3 (𝜑𝐺 Fn 𝐴)
4 bnj1536.3 . . 3 (𝜑𝐵𝐴)
5 fvreseq 7012 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
62, 3, 4, 5syl21anc 837 . 2 (𝜑 → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
71, 6mpbird 257 1 (𝜑 → (𝐹𝐵) = (𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wral 3044  wss 3914  cres 5640   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  bnj1523  35061
  Copyright terms: Public domain W3C validator