| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1536 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1536.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| bnj1536.2 | ⊢ (𝜑 → 𝐺 Fn 𝐴) |
| bnj1536.3 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| bnj1536.4 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥)) |
| Ref | Expression |
|---|---|
| bnj1536 | ⊢ (𝜑 → (𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1536.4 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥)) | |
| 2 | bnj1536.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 3 | bnj1536.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐴) | |
| 4 | bnj1536.3 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 5 | fvreseq 7012 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
| 6 | 2, 3, 4, 5 | syl21anc 837 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
| 7 | 1, 6 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3044 ⊆ wss 3914 ↾ cres 5640 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: bnj1523 35061 |
| Copyright terms: Public domain | W3C validator |