Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1536 Structured version   Visualization version   GIF version

Theorem bnj1536 34830
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1536.1 (𝜑𝐹 Fn 𝐴)
bnj1536.2 (𝜑𝐺 Fn 𝐴)
bnj1536.3 (𝜑𝐵𝐴)
bnj1536.4 (𝜑 → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
Assertion
Ref Expression
bnj1536 (𝜑 → (𝐹𝐵) = (𝐺𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem bnj1536
StepHypRef Expression
1 bnj1536.4 . 2 (𝜑 → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
2 bnj1536.1 . . 3 (𝜑𝐹 Fn 𝐴)
3 bnj1536.2 . . 3 (𝜑𝐺 Fn 𝐴)
4 bnj1536.3 . . 3 (𝜑𝐵𝐴)
5 fvreseq 7073 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
62, 3, 4, 5syl21anc 837 . 2 (𝜑 → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
71, 6mpbird 257 1 (𝜑 → (𝐹𝐵) = (𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wral 3067  wss 3976  cres 5702   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  bnj1523  35047
  Copyright terms: Public domain W3C validator