Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj546 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 32614. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj546.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj546.2 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
bnj546.3 | ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
bnj546.4 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj546.5 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj546 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj546.2 | . . . . . . 7 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
2 | 3simpc 1152 | . . . . . . 7 ⊢ ((𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′) → (𝜑′ ∧ 𝜓′)) | |
3 | 1, 2 | sylbi 220 | . . . . . 6 ⊢ (𝜏 → (𝜑′ ∧ 𝜓′)) |
4 | bnj546.3 | . . . . . . 7 ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | |
5 | bnj546.1 | . . . . . . . . . 10 ⊢ 𝐷 = (ω ∖ {∅}) | |
6 | 5 | bnj923 32460 | . . . . . . . . 9 ⊢ (𝑚 ∈ 𝐷 → 𝑚 ∈ ω) |
7 | 6 | 3ad2ant1 1135 | . . . . . . . 8 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) → 𝑚 ∈ ω) |
8 | simp3 1140 | . . . . . . . 8 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝑚) | |
9 | 7, 8 | jca 515 | . . . . . . 7 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) → (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) |
10 | 4, 9 | sylbi 220 | . . . . . 6 ⊢ (𝜎 → (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) |
11 | 3, 10 | anim12i 616 | . . . . 5 ⊢ ((𝜏 ∧ 𝜎) → ((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) |
12 | bnj256 32397 | . . . . 5 ⊢ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ↔ ((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) | |
13 | 11, 12 | sylibr 237 | . . . 4 ⊢ ((𝜏 ∧ 𝜎) → (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) |
14 | 13 | anim2i 620 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝜏 ∧ 𝜎)) → (𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) |
15 | 14 | 3impb 1117 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → (𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) |
16 | bnj546.4 | . . 3 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
17 | bnj546.5 | . . 3 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
18 | biid 264 | . . 3 ⊢ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) | |
19 | 16, 17, 18 | bnj518 32579 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
20 | fvex 6730 | . . 3 ⊢ (𝑓‘𝑝) ∈ V | |
21 | iunexg 7736 | . . 3 ⊢ (((𝑓‘𝑝) ∈ V ∧ ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) | |
22 | 20, 21 | mpan 690 | . 2 ⊢ (∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
23 | 15, 19, 22 | 3syl 18 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 Vcvv 3408 ∖ cdif 3863 ∅c0 4237 {csn 4541 ∪ ciun 4904 suc csuc 6215 Fn wfn 6375 ‘cfv 6380 ωcom 7644 ∧ w-bnj17 32377 predc-bnj14 32379 FrSe w-bnj15 32383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-om 7645 df-bnj17 32378 df-bnj14 32380 df-bnj13 32382 df-bnj15 32384 |
This theorem is referenced by: bnj938 32630 |
Copyright terms: Public domain | W3C validator |