![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj546 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 34875. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj546.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj546.2 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
bnj546.3 | ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
bnj546.4 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj546.5 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj546 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj546.2 | . . . . . . 7 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
2 | 3simpc 1148 | . . . . . . 7 ⊢ ((𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′) → (𝜑′ ∧ 𝜓′)) | |
3 | 1, 2 | sylbi 217 | . . . . . 6 ⊢ (𝜏 → (𝜑′ ∧ 𝜓′)) |
4 | bnj546.3 | . . . . . . 7 ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | |
5 | bnj546.1 | . . . . . . . . . 10 ⊢ 𝐷 = (ω ∖ {∅}) | |
6 | 5 | bnj923 34722 | . . . . . . . . 9 ⊢ (𝑚 ∈ 𝐷 → 𝑚 ∈ ω) |
7 | 6 | 3ad2ant1 1131 | . . . . . . . 8 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) → 𝑚 ∈ ω) |
8 | simp3 1136 | . . . . . . . 8 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝑚) | |
9 | 7, 8 | jca 511 | . . . . . . 7 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) → (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) |
10 | 4, 9 | sylbi 217 | . . . . . 6 ⊢ (𝜎 → (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) |
11 | 3, 10 | anim12i 612 | . . . . 5 ⊢ ((𝜏 ∧ 𝜎) → ((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) |
12 | bnj256 34660 | . . . . 5 ⊢ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ↔ ((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) | |
13 | 11, 12 | sylibr 234 | . . . 4 ⊢ ((𝜏 ∧ 𝜎) → (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) |
14 | 13 | anim2i 616 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝜏 ∧ 𝜎)) → (𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) |
15 | 14 | 3impb 1113 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → (𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) |
16 | bnj546.4 | . . 3 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
17 | bnj546.5 | . . 3 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
18 | biid 261 | . . 3 ⊢ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) | |
19 | 16, 17, 18 | bnj518 34840 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
20 | fvex 6914 | . . 3 ⊢ (𝑓‘𝑝) ∈ V | |
21 | iunexg 7981 | . . 3 ⊢ (((𝑓‘𝑝) ∈ V ∧ ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) | |
22 | 20, 21 | mpan 689 | . 2 ⊢ (∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
23 | 15, 19, 22 | 3syl 18 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1085 = wceq 1535 ∈ wcel 2104 ∀wral 3057 Vcvv 3477 ∖ cdif 3960 ∅c0 4339 {csn 4630 ∪ ciun 4998 suc csuc 6382 Fn wfn 6553 ‘cfv 6558 ωcom 7880 ∧ w-bnj17 34640 predc-bnj14 34642 FrSe w-bnj15 34646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5430 ax-un 7747 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3433 df-v 3479 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-iun 5000 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-ord 6383 df-on 6384 df-lim 6385 df-suc 6386 df-iota 6510 df-fv 6566 df-om 7881 df-bnj17 34641 df-bnj14 34643 df-bnj13 34645 df-bnj15 34647 |
This theorem is referenced by: bnj938 34891 |
Copyright terms: Public domain | W3C validator |