Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj546 Structured version   Visualization version   GIF version

Theorem bnj546 34864
Description: Technical lemma for bnj852 34889. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj546.1 𝐷 = (ω ∖ {∅})
bnj546.2 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj546.3 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj546.4 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj546.5 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj546 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj546
StepHypRef Expression
1 bnj546.2 . . . . . . 7 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
2 3simpc 1150 . . . . . . 7 ((𝑓 Fn 𝑚𝜑′𝜓′) → (𝜑′𝜓′))
31, 2sylbi 217 . . . . . 6 (𝜏 → (𝜑′𝜓′))
4 bnj546.3 . . . . . . 7 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
5 bnj546.1 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
65bnj923 34736 . . . . . . . . 9 (𝑚𝐷𝑚 ∈ ω)
763ad2ant1 1133 . . . . . . . 8 ((𝑚𝐷𝑛 = suc 𝑚𝑝𝑚) → 𝑚 ∈ ω)
8 simp3 1138 . . . . . . . 8 ((𝑚𝐷𝑛 = suc 𝑚𝑝𝑚) → 𝑝𝑚)
97, 8jca 511 . . . . . . 7 ((𝑚𝐷𝑛 = suc 𝑚𝑝𝑚) → (𝑚 ∈ ω ∧ 𝑝𝑚))
104, 9sylbi 217 . . . . . 6 (𝜎 → (𝑚 ∈ ω ∧ 𝑝𝑚))
113, 10anim12i 612 . . . . 5 ((𝜏𝜎) → ((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚)))
12 bnj256 34674 . . . . 5 ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ↔ ((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚)))
1311, 12sylibr 234 . . . 4 ((𝜏𝜎) → (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚))
1413anim2i 616 . . 3 ((𝑅 FrSe 𝐴 ∧ (𝜏𝜎)) → (𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚)))
15143impb 1115 . 2 ((𝑅 FrSe 𝐴𝜏𝜎) → (𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚)))
16 bnj546.4 . . 3 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
17 bnj546.5 . . 3 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
18 biid 261 . . 3 ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ↔ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚))
1916, 17, 18bnj518 34854 . 2 ((𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚)) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
20 fvex 6928 . . 3 (𝑓𝑝) ∈ V
21 iunexg 7998 . . 3 (((𝑓𝑝) ∈ V ∧ ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
2220, 21mpan 689 . 2 (∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
2315, 19, 223syl 18 1 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  c0 4352  {csn 4648   ciun 5015  suc csuc 6392   Fn wfn 6563  cfv 6568  ωcom 7897  w-bnj17 34654   predc-bnj14 34656   FrSe w-bnj15 34660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5650  df-we 5652  df-ord 6393  df-on 6394  df-lim 6395  df-suc 6396  df-iota 6520  df-fv 6576  df-om 7898  df-bnj17 34655  df-bnj14 34657  df-bnj13 34659  df-bnj15 34661
This theorem is referenced by:  bnj938  34905
  Copyright terms: Public domain W3C validator