Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj546 Structured version   Visualization version   GIF version

Theorem bnj546 32876
Description: Technical lemma for bnj852 32901. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj546.1 𝐷 = (ω ∖ {∅})
bnj546.2 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj546.3 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj546.4 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj546.5 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj546 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj546
StepHypRef Expression
1 bnj546.2 . . . . . . 7 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
2 3simpc 1149 . . . . . . 7 ((𝑓 Fn 𝑚𝜑′𝜓′) → (𝜑′𝜓′))
31, 2sylbi 216 . . . . . 6 (𝜏 → (𝜑′𝜓′))
4 bnj546.3 . . . . . . 7 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
5 bnj546.1 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
65bnj923 32748 . . . . . . . . 9 (𝑚𝐷𝑚 ∈ ω)
763ad2ant1 1132 . . . . . . . 8 ((𝑚𝐷𝑛 = suc 𝑚𝑝𝑚) → 𝑚 ∈ ω)
8 simp3 1137 . . . . . . . 8 ((𝑚𝐷𝑛 = suc 𝑚𝑝𝑚) → 𝑝𝑚)
97, 8jca 512 . . . . . . 7 ((𝑚𝐷𝑛 = suc 𝑚𝑝𝑚) → (𝑚 ∈ ω ∧ 𝑝𝑚))
104, 9sylbi 216 . . . . . 6 (𝜎 → (𝑚 ∈ ω ∧ 𝑝𝑚))
113, 10anim12i 613 . . . . 5 ((𝜏𝜎) → ((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚)))
12 bnj256 32685 . . . . 5 ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ↔ ((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚)))
1311, 12sylibr 233 . . . 4 ((𝜏𝜎) → (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚))
1413anim2i 617 . . 3 ((𝑅 FrSe 𝐴 ∧ (𝜏𝜎)) → (𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚)))
15143impb 1114 . 2 ((𝑅 FrSe 𝐴𝜏𝜎) → (𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚)))
16 bnj546.4 . . 3 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
17 bnj546.5 . . 3 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
18 biid 260 . . 3 ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ↔ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚))
1916, 17, 18bnj518 32866 . 2 ((𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚)) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
20 fvex 6787 . . 3 (𝑓𝑝) ∈ V
21 iunexg 7806 . . 3 (((𝑓𝑝) ∈ V ∧ ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
2220, 21mpan 687 . 2 (∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
2315, 19, 223syl 18 1 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cdif 3884  c0 4256  {csn 4561   ciun 4924  suc csuc 6268   Fn wfn 6428  cfv 6433  ωcom 7712  w-bnj17 32665   predc-bnj14 32667   FrSe w-bnj15 32671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fv 6441  df-om 7713  df-bnj17 32666  df-bnj14 32668  df-bnj13 32670  df-bnj15 32672
This theorem is referenced by:  bnj938  32917
  Copyright terms: Public domain W3C validator