| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj546 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj852 34917. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj546.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
| bnj546.2 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
| bnj546.3 | ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
| bnj546.4 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| bnj546.5 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| Ref | Expression |
|---|---|
| bnj546 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj546.2 | . . . . . . 7 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
| 2 | 3simpc 1150 | . . . . . . 7 ⊢ ((𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′) → (𝜑′ ∧ 𝜓′)) | |
| 3 | 1, 2 | sylbi 217 | . . . . . 6 ⊢ (𝜏 → (𝜑′ ∧ 𝜓′)) |
| 4 | bnj546.3 | . . . . . . 7 ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | |
| 5 | bnj546.1 | . . . . . . . . . 10 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 6 | 5 | bnj923 34764 | . . . . . . . . 9 ⊢ (𝑚 ∈ 𝐷 → 𝑚 ∈ ω) |
| 7 | 6 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) → 𝑚 ∈ ω) |
| 8 | simp3 1138 | . . . . . . . 8 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝑚) | |
| 9 | 7, 8 | jca 511 | . . . . . . 7 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) → (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) |
| 10 | 4, 9 | sylbi 217 | . . . . . 6 ⊢ (𝜎 → (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) |
| 11 | 3, 10 | anim12i 613 | . . . . 5 ⊢ ((𝜏 ∧ 𝜎) → ((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) |
| 12 | bnj256 34702 | . . . . 5 ⊢ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ↔ ((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) | |
| 13 | 11, 12 | sylibr 234 | . . . 4 ⊢ ((𝜏 ∧ 𝜎) → (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) |
| 14 | 13 | anim2i 617 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝜏 ∧ 𝜎)) → (𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) |
| 15 | 14 | 3impb 1114 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → (𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) |
| 16 | bnj546.4 | . . 3 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
| 17 | bnj546.5 | . . 3 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 18 | biid 261 | . . 3 ⊢ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) | |
| 19 | 16, 17, 18 | bnj518 34882 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
| 20 | fvex 6873 | . . 3 ⊢ (𝑓‘𝑝) ∈ V | |
| 21 | iunexg 7944 | . . 3 ⊢ (((𝑓‘𝑝) ∈ V ∧ ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) | |
| 22 | 20, 21 | mpan 690 | . 2 ⊢ (∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
| 23 | 15, 19, 22 | 3syl 18 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∖ cdif 3913 ∅c0 4298 {csn 4591 ∪ ciun 4957 suc csuc 6336 Fn wfn 6508 ‘cfv 6513 ωcom 7844 ∧ w-bnj17 34682 predc-bnj14 34684 FrSe w-bnj15 34688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-tr 5217 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fv 6521 df-om 7845 df-bnj17 34683 df-bnj14 34685 df-bnj13 34687 df-bnj15 34689 |
| This theorem is referenced by: bnj938 34933 |
| Copyright terms: Public domain | W3C validator |