![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj546 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 34889. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj546.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj546.2 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
bnj546.3 | ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
bnj546.4 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj546.5 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
Ref | Expression |
---|---|
bnj546 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj546.2 | . . . . . . 7 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
2 | 3simpc 1150 | . . . . . . 7 ⊢ ((𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′) → (𝜑′ ∧ 𝜓′)) | |
3 | 1, 2 | sylbi 217 | . . . . . 6 ⊢ (𝜏 → (𝜑′ ∧ 𝜓′)) |
4 | bnj546.3 | . . . . . . 7 ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | |
5 | bnj546.1 | . . . . . . . . . 10 ⊢ 𝐷 = (ω ∖ {∅}) | |
6 | 5 | bnj923 34736 | . . . . . . . . 9 ⊢ (𝑚 ∈ 𝐷 → 𝑚 ∈ ω) |
7 | 6 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) → 𝑚 ∈ ω) |
8 | simp3 1138 | . . . . . . . 8 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) → 𝑝 ∈ 𝑚) | |
9 | 7, 8 | jca 511 | . . . . . . 7 ⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) → (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) |
10 | 4, 9 | sylbi 217 | . . . . . 6 ⊢ (𝜎 → (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) |
11 | 3, 10 | anim12i 612 | . . . . 5 ⊢ ((𝜏 ∧ 𝜎) → ((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) |
12 | bnj256 34674 | . . . . 5 ⊢ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ↔ ((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) | |
13 | 11, 12 | sylibr 234 | . . . 4 ⊢ ((𝜏 ∧ 𝜎) → (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) |
14 | 13 | anim2i 616 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝜏 ∧ 𝜎)) → (𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) |
15 | 14 | 3impb 1115 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → (𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) |
16 | bnj546.4 | . . 3 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
17 | bnj546.5 | . . 3 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
18 | biid 261 | . . 3 ⊢ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) | |
19 | 16, 17, 18 | bnj518 34854 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) → ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
20 | fvex 6928 | . . 3 ⊢ (𝑓‘𝑝) ∈ V | |
21 | iunexg 7998 | . . 3 ⊢ (((𝑓‘𝑝) ∈ V ∧ ∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) | |
22 | 20, 21 | mpan 689 | . 2 ⊢ (∀𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
23 | 15, 19, 22 | 3syl 18 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∖ cdif 3973 ∅c0 4352 {csn 4648 ∪ ciun 5015 suc csuc 6392 Fn wfn 6563 ‘cfv 6568 ωcom 7897 ∧ w-bnj17 34654 predc-bnj14 34656 FrSe w-bnj15 34660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fv 6576 df-om 7898 df-bnj17 34655 df-bnj14 34657 df-bnj13 34659 df-bnj15 34661 |
This theorem is referenced by: bnj938 34905 |
Copyright terms: Public domain | W3C validator |