![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj969 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34646. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj969.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj969.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj969.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj969.10 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj969.12 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
bnj969.14 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj969.15 | ⊢ (𝜎 ↔ (𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛)) |
Ref | Expression |
---|---|
bnj969 | ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝐶 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) | |
2 | bnj667 34388 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
3 | bnj969.3 | . . . . . . 7 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | bnj969.14 | . . . . . . 7 ⊢ (𝜏 ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
5 | 2, 3, 4 | 3imtr4i 291 | . . . . . 6 ⊢ (𝜒 → 𝜏) |
6 | 5 | 3ad2ant1 1130 | . . . . 5 ⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → 𝜏) |
7 | 6 | adantl 480 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝜏) |
8 | 3 | bnj1232 34439 | . . . . . . 7 ⊢ (𝜒 → 𝑛 ∈ 𝐷) |
9 | vex 3475 | . . . . . . . 8 ⊢ 𝑚 ∈ V | |
10 | 9 | bnj216 34368 | . . . . . . 7 ⊢ (𝑛 = suc 𝑚 → 𝑚 ∈ 𝑛) |
11 | id 22 | . . . . . . 7 ⊢ (𝑝 = suc 𝑛 → 𝑝 = suc 𝑛) | |
12 | 8, 10, 11 | 3anim123i 1148 | . . . . . 6 ⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → (𝑛 ∈ 𝐷 ∧ 𝑚 ∈ 𝑛 ∧ 𝑝 = suc 𝑛)) |
13 | bnj969.15 | . . . . . . 7 ⊢ (𝜎 ↔ (𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛)) | |
14 | 3ancomb 1096 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛) ↔ (𝑛 ∈ 𝐷 ∧ 𝑚 ∈ 𝑛 ∧ 𝑝 = suc 𝑛)) | |
15 | 13, 14 | bitri 274 | . . . . . 6 ⊢ (𝜎 ↔ (𝑛 ∈ 𝐷 ∧ 𝑚 ∈ 𝑛 ∧ 𝑝 = suc 𝑛)) |
16 | 12, 15 | sylibr 233 | . . . . 5 ⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → 𝜎) |
17 | 16 | adantl 480 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝜎) |
18 | 1, 7, 17 | jca32 514 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜏 ∧ 𝜎))) |
19 | bnj256 34342 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜏 ∧ 𝜎))) | |
20 | 18, 19 | sylibr 233 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎)) |
21 | bnj969.12 | . . 3 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
22 | bnj969.10 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
23 | bnj969.1 | . . . 4 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
24 | bnj969.2 | . . . 4 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
25 | 22, 4, 13, 23, 24 | bnj938 34573 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) ∈ V) |
26 | 21, 25 | eqeltrid 2832 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐶 ∈ V) |
27 | 20, 26 | syl 17 | 1 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝐶 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3057 Vcvv 3471 ∖ cdif 3944 ∅c0 4324 {csn 4630 ∪ ciun 4998 suc csuc 6374 Fn wfn 6546 ‘cfv 6551 ωcom 7874 ∧ w-bnj17 34322 predc-bnj14 34324 FrSe w-bnj15 34328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-tr 5268 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fv 6559 df-om 7875 df-bnj17 34323 df-bnj14 34325 df-bnj13 34327 df-bnj15 34329 |
This theorem is referenced by: bnj910 34584 bnj1006 34596 |
Copyright terms: Public domain | W3C validator |