| Step | Hyp | Ref
| Expression |
| 1 | | bnj611.2 |
. 2
⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓) |
| 2 | | df-ral 3047 |
. . . . 5
⊢
(∀𝑖 ∈
ω (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖(𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 3 | 2 | bicomi 224 |
. . . 4
⊢
(∀𝑖(𝑖 ∈ ω → (suc
𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 4 | 3 | sbcbii 3818 |
. . 3
⊢
([𝐺 / 𝑓]∀𝑖(𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [𝐺 / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 5 | | bnj611.3 |
. . . . . . 7
⊢ 𝐺 ∈ V |
| 6 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑓 𝑖 ∈ ω |
| 7 | 6 | sbc19.21g 3833 |
. . . . . . 7
⊢ (𝐺 ∈ V → ([𝐺 / 𝑓](𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → [𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
| 8 | 5, 7 | ax-mp 5 |
. . . . . 6
⊢
([𝐺 / 𝑓](𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → [𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 9 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑓 suc 𝑖 ∈ 𝑁 |
| 10 | 9 | sbc19.21g 3833 |
. . . . . . . . 9
⊢ (𝐺 ∈ V → ([𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑁 → [𝐺 / 𝑓](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 11 | 5, 10 | ax-mp 5 |
. . . . . . . 8
⊢
([𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑁 → [𝐺 / 𝑓](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 12 | | fveq1 6864 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐺 → (𝑓‘suc 𝑖) = (𝐺‘suc 𝑖)) |
| 13 | | fveq1 6864 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐺 → (𝑓‘𝑖) = (𝐺‘𝑖)) |
| 14 | 13 | bnj1113 34783 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐺 → ∪
𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 15 | 12, 14 | eqeq12d 2746 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐺 → ((𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 16 | | fveq1 6864 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑒 → (𝑓‘suc 𝑖) = (𝑒‘suc 𝑖)) |
| 17 | | fveq1 6864 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑒 → (𝑓‘𝑖) = (𝑒‘𝑖)) |
| 18 | 17 | bnj1113 34783 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑒 → ∪
𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ (𝑒‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 19 | 16, 18 | eqeq12d 2746 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑒 → ((𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑒‘suc 𝑖) = ∪ 𝑦 ∈ (𝑒‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 20 | | fveq1 6864 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝐺 → (𝑒‘suc 𝑖) = (𝐺‘suc 𝑖)) |
| 21 | | fveq1 6864 |
. . . . . . . . . . . 12
⊢ (𝑒 = 𝐺 → (𝑒‘𝑖) = (𝐺‘𝑖)) |
| 22 | 21 | bnj1113 34783 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝐺 → ∪
𝑦 ∈ (𝑒‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 23 | 20, 22 | eqeq12d 2746 |
. . . . . . . . . 10
⊢ (𝑒 = 𝐺 → ((𝑒‘suc 𝑖) = ∪ 𝑦 ∈ (𝑒‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 24 | 5, 15, 19, 23 | bnj610 34745 |
. . . . . . . . 9
⊢
([𝐺 / 𝑓](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
| 25 | 24 | imbi2i 336 |
. . . . . . . 8
⊢ ((suc
𝑖 ∈ 𝑁 → [𝐺 / 𝑓](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 26 | 11, 25 | bitri 275 |
. . . . . . 7
⊢
([𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 27 | 26 | imbi2i 336 |
. . . . . 6
⊢ ((𝑖 ∈ ω →
[𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 28 | 8, 27 | bitri 275 |
. . . . 5
⊢
([𝐺 / 𝑓](𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 29 | 28 | albii 1819 |
. . . 4
⊢
(∀𝑖[𝐺 / 𝑓](𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ∀𝑖(𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 30 | | sbcal 3821 |
. . . 4
⊢
([𝐺 / 𝑓]∀𝑖(𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ∀𝑖[𝐺 / 𝑓](𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 31 | | df-ral 3047 |
. . . 4
⊢
(∀𝑖 ∈
ω (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖(𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 32 | 29, 30, 31 | 3bitr4ri 304 |
. . 3
⊢
(∀𝑖 ∈
ω (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝐺 / 𝑓]∀𝑖(𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
| 33 | | bnj611.1 |
. . . 4
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 34 | 33 | sbcbii 3818 |
. . 3
⊢
([𝐺 / 𝑓]𝜓 ↔ [𝐺 / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 35 | 4, 32, 34 | 3bitr4ri 304 |
. 2
⊢
([𝐺 / 𝑓]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 36 | 1, 35 | bitri 275 |
1
⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |