Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj611 Structured version   Visualization version   GIF version

Theorem bnj611 32798
Description: Technical lemma for bnj852 32801. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj611.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj611.2 (𝜓″[𝐺 / 𝑓]𝜓)
bnj611.3 𝐺 ∈ V
Assertion
Ref Expression
bnj611 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑓   𝑖,𝐺,𝑦   𝑓,𝑁   𝑅,𝑓   𝑓,𝑖,𝑦
Allowed substitution hints:   𝜓(𝑦,𝑓,𝑖)   𝐴(𝑦,𝑖)   𝑅(𝑦,𝑖)   𝐺(𝑓)   𝑁(𝑦,𝑖)   𝜓″(𝑦,𝑓,𝑖)

Proof of Theorem bnj611
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 bnj611.2 . 2 (𝜓″[𝐺 / 𝑓]𝜓)
2 df-ral 3068 . . . . 5 (∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖(𝑖 ∈ ω → (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
32bicomi 223 . . . 4 (∀𝑖(𝑖 ∈ ω → (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
43sbcbii 3772 . . 3 ([𝐺 / 𝑓]𝑖(𝑖 ∈ ω → (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [𝐺 / 𝑓]𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
5 bnj611.3 . . . . . . 7 𝐺 ∈ V
6 nfv 1918 . . . . . . . 8 𝑓 𝑖 ∈ ω
76sbc19.21g 3790 . . . . . . 7 (𝐺 ∈ V → ([𝐺 / 𝑓](𝑖 ∈ ω → (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → [𝐺 / 𝑓](suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))))
85, 7ax-mp 5 . . . . . 6 ([𝐺 / 𝑓](𝑖 ∈ ω → (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → [𝐺 / 𝑓](suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
9 nfv 1918 . . . . . . . . . 10 𝑓 suc 𝑖𝑁
109sbc19.21g 3790 . . . . . . . . 9 (𝐺 ∈ V → ([𝐺 / 𝑓](suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑁[𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
115, 10ax-mp 5 . . . . . . . 8 ([𝐺 / 𝑓](suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑁[𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
12 fveq1 6755 . . . . . . . . . . 11 (𝑓 = 𝐺 → (𝑓‘suc 𝑖) = (𝐺‘suc 𝑖))
13 fveq1 6755 . . . . . . . . . . . 12 (𝑓 = 𝐺 → (𝑓𝑖) = (𝐺𝑖))
1413bnj1113 32665 . . . . . . . . . . 11 (𝑓 = 𝐺 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
1512, 14eqeq12d 2754 . . . . . . . . . 10 (𝑓 = 𝐺 → ((𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
16 fveq1 6755 . . . . . . . . . . 11 (𝑓 = 𝑒 → (𝑓‘suc 𝑖) = (𝑒‘suc 𝑖))
17 fveq1 6755 . . . . . . . . . . . 12 (𝑓 = 𝑒 → (𝑓𝑖) = (𝑒𝑖))
1817bnj1113 32665 . . . . . . . . . . 11 (𝑓 = 𝑒 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑒𝑖) pred(𝑦, 𝐴, 𝑅))
1916, 18eqeq12d 2754 . . . . . . . . . 10 (𝑓 = 𝑒 → ((𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑒‘suc 𝑖) = 𝑦 ∈ (𝑒𝑖) pred(𝑦, 𝐴, 𝑅)))
20 fveq1 6755 . . . . . . . . . . 11 (𝑒 = 𝐺 → (𝑒‘suc 𝑖) = (𝐺‘suc 𝑖))
21 fveq1 6755 . . . . . . . . . . . 12 (𝑒 = 𝐺 → (𝑒𝑖) = (𝐺𝑖))
2221bnj1113 32665 . . . . . . . . . . 11 (𝑒 = 𝐺 𝑦 ∈ (𝑒𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
2320, 22eqeq12d 2754 . . . . . . . . . 10 (𝑒 = 𝐺 → ((𝑒‘suc 𝑖) = 𝑦 ∈ (𝑒𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
245, 15, 19, 23bnj610 32627 . . . . . . . . 9 ([𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
2524imbi2i 335 . . . . . . . 8 ((suc 𝑖𝑁[𝐺 / 𝑓](𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
2611, 25bitri 274 . . . . . . 7 ([𝐺 / 𝑓](suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
2726imbi2i 335 . . . . . 6 ((𝑖 ∈ ω → [𝐺 / 𝑓](suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))))
288, 27bitri 274 . . . . 5 ([𝐺 / 𝑓](𝑖 ∈ ω → (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))))
2928albii 1823 . . . 4 (∀𝑖[𝐺 / 𝑓](𝑖 ∈ ω → (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ∀𝑖(𝑖 ∈ ω → (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))))
30 sbcal 3776 . . . 4 ([𝐺 / 𝑓]𝑖(𝑖 ∈ ω → (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ∀𝑖[𝐺 / 𝑓](𝑖 ∈ ω → (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
31 df-ral 3068 . . . 4 (∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖(𝑖 ∈ ω → (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))))
3229, 30, 313bitr4ri 303 . . 3 (∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝐺 / 𝑓]𝑖(𝑖 ∈ ω → (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
33 bnj611.1 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3433sbcbii 3772 . . 3 ([𝐺 / 𝑓]𝜓[𝐺 / 𝑓]𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
354, 32, 343bitr4ri 303 . 2 ([𝐺 / 𝑓]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
361, 35bitri 274 1 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  [wsbc 3711   ciun 4921  suc csuc 6253  cfv 6418  ωcom 7687   predc-bnj14 32567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-sbc 3712  df-in 3890  df-ss 3900  df-uni 4837  df-iun 4923  df-br 5071  df-iota 6376  df-fv 6426
This theorem is referenced by:  bnj600  32799  bnj908  32811
  Copyright terms: Public domain W3C validator