Step | Hyp | Ref
| Expression |
1 | | bnj1000.2 |
. 2
⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓) |
2 | | df-ral 3068 |
. . . . 5
⊢
(∀𝑖 ∈
ω (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖(𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
3 | 2 | bicomi 223 |
. . . 4
⊢
(∀𝑖(𝑖 ∈ ω → (suc
𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
4 | 3 | sbcbii 3772 |
. . 3
⊢
([𝐺 / 𝑓]∀𝑖(𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ [𝐺 / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
5 | | bnj1000.3 |
. . . . . . 7
⊢ 𝐺 ∈ V |
6 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑓 𝑖 ∈ ω |
7 | 6 | sbc19.21g 3790 |
. . . . . . 7
⊢ (𝐺 ∈ V → ([𝐺 / 𝑓](𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → [𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))))) |
8 | 5, 7 | ax-mp 5 |
. . . . . 6
⊢
([𝐺 / 𝑓](𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → [𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
9 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑓 suc 𝑖 ∈ 𝑁 |
10 | 9 | sbc19.21g 3790 |
. . . . . . . . 9
⊢ (𝐺 ∈ V → ([𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑁 → [𝐺 / 𝑓](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
11 | 5, 10 | ax-mp 5 |
. . . . . . . 8
⊢
([𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑁 → [𝐺 / 𝑓](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
12 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐺 → (𝑓‘suc 𝑖) = (𝐺‘suc 𝑖)) |
13 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝐺 → (𝑓‘𝑖) = (𝐺‘𝑖)) |
14 | | ax-5 1914 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ (𝑓‘𝑖) → ∀𝑦 𝑤 ∈ (𝑓‘𝑖)) |
15 | | bnj1000.16 |
. . . . . . . . . . . . . . . 16
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
16 | | nfcv 2906 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦𝑓 |
17 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑦𝑛 |
18 | | bnj1000.15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
19 | | nfiu1 4955 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑦∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
20 | 18, 19 | nfcxfr 2904 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑦𝐶 |
21 | 17, 20 | nfop 4817 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑦〈𝑛, 𝐶〉 |
22 | 21 | nfsn 4640 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑦{〈𝑛, 𝐶〉} |
23 | 16, 22 | nfun 4095 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦(𝑓 ∪ {〈𝑛, 𝐶〉}) |
24 | 15, 23 | nfcxfr 2904 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦𝐺 |
25 | | nfcv 2906 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑦𝑖 |
26 | 24, 25 | nffv 6766 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑦(𝐺‘𝑖) |
27 | 26 | nfcrii 2898 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ (𝐺‘𝑖) → ∀𝑦 𝑤 ∈ (𝐺‘𝑖)) |
28 | 14, 27 | bnj1316 32700 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑖) = (𝐺‘𝑖) → ∪
𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
29 | 13, 28 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐺 → ∪
𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
30 | 12, 29 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐺 → ((𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
31 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑒 → (𝑓‘suc 𝑖) = (𝑒‘suc 𝑖)) |
32 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑒 → (𝑓‘𝑖) = (𝑒‘𝑖)) |
33 | | ax-5 1914 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑖) = (𝑒‘𝑖) → ∀𝑦(𝑓‘𝑖) = (𝑒‘𝑖)) |
34 | 33 | bnj956 32656 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑖) = (𝑒‘𝑖) → ∪
𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ (𝑒‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
35 | 32, 34 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑒 → ∪
𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ (𝑒‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
36 | 31, 35 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑒 → ((𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑒‘suc 𝑖) = ∪ 𝑦 ∈ (𝑒‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
37 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝐺 → (𝑒‘suc 𝑖) = (𝐺‘suc 𝑖)) |
38 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑒 = 𝐺 → (𝑒‘𝑖) = (𝐺‘𝑖)) |
39 | | ax-5 1914 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ (𝑒‘𝑖) → ∀𝑦 𝑤 ∈ (𝑒‘𝑖)) |
40 | 39, 27 | bnj1316 32700 |
. . . . . . . . . . . 12
⊢ ((𝑒‘𝑖) = (𝐺‘𝑖) → ∪
𝑦 ∈ (𝑒‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
41 | 38, 40 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝐺 → ∪
𝑦 ∈ (𝑒‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
42 | 37, 41 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑒 = 𝐺 → ((𝑒‘suc 𝑖) = ∪ 𝑦 ∈ (𝑒‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
43 | 5, 30, 36, 42 | bnj610 32627 |
. . . . . . . . 9
⊢
([𝐺 / 𝑓](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
44 | 43 | imbi2i 335 |
. . . . . . . 8
⊢ ((suc
𝑖 ∈ 𝑁 → [𝐺 / 𝑓](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
45 | 11, 44 | bitri 274 |
. . . . . . 7
⊢
([𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
46 | 45 | imbi2i 335 |
. . . . . 6
⊢ ((𝑖 ∈ ω →
[𝐺 / 𝑓](suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
47 | 8, 46 | bitri 274 |
. . . . 5
⊢
([𝐺 / 𝑓](𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ (𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
48 | 47 | albii 1823 |
. . . 4
⊢
(∀𝑖[𝐺 / 𝑓](𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ∀𝑖(𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
49 | | sbcal 3776 |
. . . 4
⊢
([𝐺 / 𝑓]∀𝑖(𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) ↔ ∀𝑖[𝐺 / 𝑓](𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
50 | | df-ral 3068 |
. . . 4
⊢
(∀𝑖 ∈
ω (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖(𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
51 | 48, 49, 50 | 3bitr4ri 303 |
. . 3
⊢
(∀𝑖 ∈
ω (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ [𝐺 / 𝑓]∀𝑖(𝑖 ∈ ω → (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
52 | | bnj1000.1 |
. . . 4
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
53 | 52 | sbcbii 3772 |
. . 3
⊢
([𝐺 / 𝑓]𝜓 ↔ [𝐺 / 𝑓]∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
54 | 4, 51, 53 | 3bitr4ri 303 |
. 2
⊢
([𝐺 / 𝑓]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
55 | 1, 54 | bitri 274 |
1
⊢ (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑁 → (𝐺‘suc 𝑖) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅))) |