| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| sbcie.1 | ⊢ 𝐴 ∈ V |
| sbcie.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbcie | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcie.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sbcie.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | sbcieg 3781 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 [wsbc 3741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3742 |
| This theorem is referenced by: sbc2ie 3817 csbie 3885 rexopabb 5468 reuop 6240 tfinds2 7794 soseq 8089 findcard2 9074 ac6sfi 9168 ac6num 10370 fpwwe 10537 nn1suc 12147 wrdind 14629 cjth 15010 fprodser 15856 prmind2 16596 joinlem 18287 meetlem 18301 mndind 18736 isghm 19128 isghmOLD 19129 islmod 20798 islindf 21750 fgcl 23794 cfinfil 23809 csdfil 23810 supfil 23811 fin1aufil 23848 quotval 26228 dfconngr1 30166 isconngr 30167 isconngr1 30168 wrdt2ind 32932 bnj62 34730 bnj610 34757 bnj976 34787 bnj106 34878 bnj125 34882 bnj154 34888 bnj155 34889 bnj526 34898 bnj540 34902 bnj591 34921 bnj609 34927 bnj893 34938 bnj1417 35051 poimirlem27 37693 sdclem2 37788 fdc 37791 fdc1 37792 lshpkrlem3 39157 hdmap1fval 41841 hdmapfval 41872 sn-isghm 42712 rabren3dioph 42854 2nn0ind 42984 zindbi 42985 onfrALTlem5 44581 onfrALTlem5VD 44923 reupr 47559 |
| Copyright terms: Public domain | W3C validator |