| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| sbcie.1 | ⊢ 𝐴 ∈ V |
| sbcie.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbcie | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcie.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sbcie.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | sbcieg 3793 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3447 [wsbc 3753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3754 |
| This theorem is referenced by: sbc2ie 3829 csbie 3897 rexopabb 5488 reuop 6266 tfinds2 7840 soseq 8138 findcard2 9128 ac6sfi 9231 ac6num 10432 fpwwe 10599 nn1suc 12208 wrdind 14687 cjth 15069 fprodser 15915 prmind2 16655 joinlem 18342 meetlem 18356 mndind 18755 isghm 19147 isghmOLD 19148 islmod 20770 islindf 21721 fgcl 23765 cfinfil 23780 csdfil 23781 supfil 23782 fin1aufil 23819 quotval 26200 dfconngr1 30117 isconngr 30118 isconngr1 30119 wrdt2ind 32875 bnj62 34710 bnj610 34737 bnj976 34767 bnj106 34858 bnj125 34862 bnj154 34868 bnj155 34869 bnj526 34878 bnj540 34882 bnj591 34901 bnj609 34907 bnj893 34918 bnj1417 35031 poimirlem27 37641 sdclem2 37736 fdc 37739 fdc1 37740 lshpkrlem3 39105 hdmap1fval 41790 hdmapfval 41821 sn-isghm 42661 rabren3dioph 42803 2nn0ind 42934 zindbi 42935 onfrALTlem5 44532 onfrALTlem5VD 44874 reupr 47523 |
| Copyright terms: Public domain | W3C validator |