| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| sbcie.1 | ⊢ 𝐴 ∈ V |
| sbcie.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbcie | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcie.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sbcie.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | sbcieg 3790 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 [wsbc 3750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3751 |
| This theorem is referenced by: sbc2ie 3826 csbie 3894 rexopabb 5483 reuop 6254 tfinds2 7820 soseq 8115 findcard2 9105 ac6sfi 9207 ac6num 10408 fpwwe 10575 nn1suc 12184 wrdind 14663 cjth 15045 fprodser 15891 prmind2 16631 joinlem 18318 meetlem 18332 mndind 18731 isghm 19123 isghmOLD 19124 islmod 20746 islindf 21697 fgcl 23741 cfinfil 23756 csdfil 23757 supfil 23758 fin1aufil 23795 quotval 26176 dfconngr1 30090 isconngr 30091 isconngr1 30092 wrdt2ind 32848 bnj62 34683 bnj610 34710 bnj976 34740 bnj106 34831 bnj125 34835 bnj154 34841 bnj155 34842 bnj526 34851 bnj540 34855 bnj591 34874 bnj609 34880 bnj893 34891 bnj1417 35004 poimirlem27 37614 sdclem2 37709 fdc 37712 fdc1 37713 lshpkrlem3 39078 hdmap1fval 41763 hdmapfval 41794 sn-isghm 42634 rabren3dioph 42776 2nn0ind 42907 zindbi 42908 onfrALTlem5 44505 onfrALTlem5VD 44847 reupr 47496 |
| Copyright terms: Public domain | W3C validator |