| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| sbcie.1 | ⊢ 𝐴 ∈ V |
| sbcie.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbcie | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcie.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sbcie.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | sbcieg 3777 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 Vcvv 3437 [wsbc 3737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-sbc 3738 |
| This theorem is referenced by: sbc2ie 3813 csbie 3881 rexopabb 5473 reuop 6247 tfinds2 7802 soseq 8097 findcard2 9083 ac6sfi 9177 ac6num 10379 fpwwe 10546 nn1suc 12156 wrdind 14633 cjth 15014 fprodser 15860 prmind2 16600 joinlem 18291 meetlem 18305 mndind 18740 isghm 19131 isghmOLD 19132 islmod 20801 islindf 21753 fgcl 23796 cfinfil 23811 csdfil 23812 supfil 23813 fin1aufil 23850 quotval 26230 dfconngr1 30172 isconngr 30173 isconngr1 30174 wrdt2ind 32943 bnj62 34755 bnj610 34782 bnj976 34812 bnj106 34903 bnj125 34907 bnj154 34913 bnj155 34914 bnj526 34923 bnj540 34927 bnj591 34946 bnj609 34952 bnj893 34963 bnj1417 35076 poimirlem27 37710 sdclem2 37805 fdc 37808 fdc1 37809 lshpkrlem3 39234 hdmap1fval 41918 hdmapfval 41949 sn-isghm 42794 rabren3dioph 42935 2nn0ind 43065 zindbi 43066 onfrALTlem5 44662 onfrALTlem5VD 45004 reupr 47649 |
| Copyright terms: Public domain | W3C validator |