Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
Ref | Expression |
---|---|
sbcie.1 | ⊢ 𝐴 ∈ V |
sbcie.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbcie | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcie.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbcie.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbcieg 3751 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: sbc2ie 3795 csbie 3864 rexopabb 5434 reuop 6185 tfinds2 7685 findcard2 8909 findcard2OLD 8986 ac6sfi 8988 ac6num 10166 fpwwe 10333 nn1suc 11925 wrdind 14363 cjth 14742 fprodser 15587 prmind2 16318 joinlem 18016 meetlem 18030 mndind 18381 isghm 18749 islmod 20042 islindf 20929 fgcl 22937 cfinfil 22952 csdfil 22953 supfil 22954 fin1aufil 22991 quotval 25357 dfconngr1 28453 isconngr 28454 isconngr1 28455 wrdt2ind 31127 bnj62 32599 bnj610 32627 bnj976 32657 bnj106 32748 bnj125 32752 bnj154 32758 bnj155 32759 bnj526 32768 bnj540 32772 bnj591 32791 bnj609 32797 bnj893 32808 bnj1417 32921 soseq 33730 poimirlem27 35731 sdclem2 35827 fdc 35830 fdc1 35831 lshpkrlem3 37053 hdmap1fval 39737 hdmapfval 39768 rabren3dioph 40553 2nn0ind 40683 zindbi 40684 onfrALTlem5 42051 onfrALTlem5VD 42394 reupr 44862 |
Copyright terms: Public domain | W3C validator |