| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| sbcie.1 | ⊢ 𝐴 ∈ V |
| sbcie.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbcie | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcie.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sbcie.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | sbcieg 3784 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3438 [wsbc 3744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3745 |
| This theorem is referenced by: sbc2ie 3820 csbie 3888 rexopabb 5475 reuop 6245 tfinds2 7804 soseq 8099 findcard2 9088 ac6sfi 9189 ac6num 10392 fpwwe 10559 nn1suc 12168 wrdind 14646 cjth 15028 fprodser 15874 prmind2 16614 joinlem 18305 meetlem 18319 mndind 18720 isghm 19112 isghmOLD 19113 islmod 20785 islindf 21737 fgcl 23781 cfinfil 23796 csdfil 23797 supfil 23798 fin1aufil 23835 quotval 26216 dfconngr1 30150 isconngr 30151 isconngr1 30152 wrdt2ind 32908 bnj62 34689 bnj610 34716 bnj976 34746 bnj106 34837 bnj125 34841 bnj154 34847 bnj155 34848 bnj526 34857 bnj540 34861 bnj591 34880 bnj609 34886 bnj893 34897 bnj1417 35010 poimirlem27 37629 sdclem2 37724 fdc 37727 fdc1 37728 lshpkrlem3 39093 hdmap1fval 41778 hdmapfval 41809 sn-isghm 42649 rabren3dioph 42791 2nn0ind 42921 zindbi 42922 onfrALTlem5 44519 onfrALTlem5VD 44861 reupr 47510 |
| Copyright terms: Public domain | W3C validator |