MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcie Structured version   Visualization version   GIF version

Theorem sbcie 3783
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.)
Hypotheses
Ref Expression
sbcie.1 𝐴 ∈ V
sbcie.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbcie ([𝐴 / 𝑥]𝜑𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sbcie
StepHypRef Expression
1 sbcie.1 . 2 𝐴 ∈ V
2 sbcie.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32sbcieg 3781 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑𝜓))
41, 3ax-mp 5 1 ([𝐴 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  Vcvv 3436  [wsbc 3741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-sbc 3742
This theorem is referenced by:  sbc2ie  3817  csbie  3885  rexopabb  5468  reuop  6240  tfinds2  7794  soseq  8089  findcard2  9074  ac6sfi  9168  ac6num  10370  fpwwe  10537  nn1suc  12147  wrdind  14629  cjth  15010  fprodser  15856  prmind2  16596  joinlem  18287  meetlem  18301  mndind  18736  isghm  19128  isghmOLD  19129  islmod  20798  islindf  21750  fgcl  23794  cfinfil  23809  csdfil  23810  supfil  23811  fin1aufil  23848  quotval  26228  dfconngr1  30166  isconngr  30167  isconngr1  30168  wrdt2ind  32932  bnj62  34730  bnj610  34757  bnj976  34787  bnj106  34878  bnj125  34882  bnj154  34888  bnj155  34889  bnj526  34898  bnj540  34902  bnj591  34921  bnj609  34927  bnj893  34938  bnj1417  35051  poimirlem27  37693  sdclem2  37788  fdc  37791  fdc1  37792  lshpkrlem3  39157  hdmap1fval  41841  hdmapfval  41872  sn-isghm  42712  rabren3dioph  42854  2nn0ind  42984  zindbi  42985  onfrALTlem5  44581  onfrALTlem5VD  44923  reupr  47559
  Copyright terms: Public domain W3C validator