![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
Ref | Expression |
---|---|
sbcie.1 | ⊢ 𝐴 ∈ V |
sbcie.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbcie | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcie.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbcie.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbcieg 3845 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: sbc2ie 3887 csbie 3957 rexopabb 5547 reuop 6324 tfinds2 7901 soseq 8200 findcard2 9230 ac6sfi 9348 ac6num 10548 fpwwe 10715 nn1suc 12315 wrdind 14770 cjth 15152 fprodser 15997 prmind2 16732 joinlem 18453 meetlem 18467 mndind 18863 isghm 19255 isghmOLD 19256 islmod 20884 islindf 21855 fgcl 23907 cfinfil 23922 csdfil 23923 supfil 23924 fin1aufil 23961 quotval 26352 dfconngr1 30220 isconngr 30221 isconngr1 30222 wrdt2ind 32920 bnj62 34696 bnj610 34723 bnj976 34753 bnj106 34844 bnj125 34848 bnj154 34854 bnj155 34855 bnj526 34864 bnj540 34868 bnj591 34887 bnj609 34893 bnj893 34904 bnj1417 35017 poimirlem27 37607 sdclem2 37702 fdc 37705 fdc1 37706 lshpkrlem3 39068 hdmap1fval 41753 hdmapfval 41784 sn-isghm 42628 rabren3dioph 42771 2nn0ind 42902 zindbi 42903 onfrALTlem5 44513 onfrALTlem5VD 44856 reupr 47396 |
Copyright terms: Public domain | W3C validator |