![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
Ref | Expression |
---|---|
sbcie.1 | ⊢ 𝐴 ∈ V |
sbcie.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbcie | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcie.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbcie.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbcieg 3695 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1656 ∈ wcel 2164 Vcvv 3414 [wsbc 3662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-v 3416 df-sbc 3663 |
This theorem is referenced by: tfinds2 7324 findcard2 8469 ac6sfi 8473 ac6num 9616 fpwwe 9783 nn1suc 11373 wrdind 13812 wrdindOLD 13813 cjth 14220 fprodser 15052 prmind2 15770 joinlem 17364 meetlem 17378 mrcmndind 17719 isghm 18011 islmod 19223 islindf 20518 fgcl 22052 cfinfil 22067 csdfil 22068 supfil 22069 fin1aufil 22106 quotval 24446 dfconngr1 27553 isconngr 27554 isconngr1 27555 bnj62 31324 bnj610 31352 bnj976 31383 bnj106 31473 bnj125 31477 bnj154 31483 bnj155 31484 bnj526 31493 bnj540 31497 bnj591 31516 bnj609 31522 bnj893 31533 bnj1417 31644 soseq 32282 cnfinltrel 33779 poimirlem27 33973 sdclem2 34073 fdc 34076 fdc1 34077 lshpkrlem3 35180 hdmap1fval 37864 hdmapfval 37895 rabren3dioph 38216 2nn0ind 38346 zindbi 38347 onfrALTlem5 39579 onfrALTlem5VD 39932 |
Copyright terms: Public domain | W3C validator |