| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| sbcie.1 | ⊢ 𝐴 ∈ V |
| sbcie.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbcie | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcie.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sbcie.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | sbcieg 3796 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3757 |
| This theorem is referenced by: sbc2ie 3832 csbie 3900 rexopabb 5491 reuop 6269 tfinds2 7843 soseq 8141 findcard2 9134 ac6sfi 9238 ac6num 10439 fpwwe 10606 nn1suc 12215 wrdind 14694 cjth 15076 fprodser 15922 prmind2 16662 joinlem 18349 meetlem 18363 mndind 18762 isghm 19154 isghmOLD 19155 islmod 20777 islindf 21728 fgcl 23772 cfinfil 23787 csdfil 23788 supfil 23789 fin1aufil 23826 quotval 26207 dfconngr1 30124 isconngr 30125 isconngr1 30126 wrdt2ind 32882 bnj62 34717 bnj610 34744 bnj976 34774 bnj106 34865 bnj125 34869 bnj154 34875 bnj155 34876 bnj526 34885 bnj540 34889 bnj591 34908 bnj609 34914 bnj893 34925 bnj1417 35038 poimirlem27 37648 sdclem2 37743 fdc 37746 fdc1 37747 lshpkrlem3 39112 hdmap1fval 41797 hdmapfval 41828 sn-isghm 42668 rabren3dioph 42810 2nn0ind 42941 zindbi 42942 onfrALTlem5 44539 onfrALTlem5VD 44881 reupr 47527 |
| Copyright terms: Public domain | W3C validator |