| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| sbcie.1 | ⊢ 𝐴 ∈ V |
| sbcie.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbcie | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcie.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sbcie.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | sbcieg 3805 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 Vcvv 3459 [wsbc 3765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-sbc 3766 |
| This theorem is referenced by: sbc2ie 3841 csbie 3909 rexopabb 5503 reuop 6282 tfinds2 7859 soseq 8158 findcard2 9178 ac6sfi 9292 ac6num 10493 fpwwe 10660 nn1suc 12262 wrdind 14740 cjth 15122 fprodser 15965 prmind2 16704 joinlem 18393 meetlem 18407 mndind 18806 isghm 19198 isghmOLD 19199 islmod 20821 islindf 21772 fgcl 23816 cfinfil 23831 csdfil 23832 supfil 23833 fin1aufil 23870 quotval 26252 dfconngr1 30169 isconngr 30170 isconngr1 30171 wrdt2ind 32929 bnj62 34751 bnj610 34778 bnj976 34808 bnj106 34899 bnj125 34903 bnj154 34909 bnj155 34910 bnj526 34919 bnj540 34923 bnj591 34942 bnj609 34948 bnj893 34959 bnj1417 35072 poimirlem27 37671 sdclem2 37766 fdc 37769 fdc1 37770 lshpkrlem3 39130 hdmap1fval 41815 hdmapfval 41846 sn-isghm 42696 rabren3dioph 42838 2nn0ind 42969 zindbi 42970 onfrALTlem5 44567 onfrALTlem5VD 44909 reupr 47536 |
| Copyright terms: Public domain | W3C validator |