Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.) |
Ref | Expression |
---|---|
sbcie.1 | ⊢ 𝐴 ∈ V |
sbcie.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbcie | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcie.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbcie.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbcieg 3756 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3717 |
This theorem is referenced by: sbc2ie 3799 csbie 3868 rexopabb 5441 reuop 6196 tfinds2 7710 findcard2 8947 findcard2OLD 9056 ac6sfi 9058 ac6num 10235 fpwwe 10402 nn1suc 11995 wrdind 14435 cjth 14814 fprodser 15659 prmind2 16390 joinlem 18101 meetlem 18115 mndind 18466 isghm 18834 islmod 20127 islindf 21019 fgcl 23029 cfinfil 23044 csdfil 23045 supfil 23046 fin1aufil 23083 quotval 25452 dfconngr1 28552 isconngr 28553 isconngr1 28554 wrdt2ind 31225 bnj62 32699 bnj610 32727 bnj976 32757 bnj106 32848 bnj125 32852 bnj154 32858 bnj155 32859 bnj526 32868 bnj540 32872 bnj591 32891 bnj609 32897 bnj893 32908 bnj1417 33021 soseq 33803 poimirlem27 35804 sdclem2 35900 fdc 35903 fdc1 35904 lshpkrlem3 37126 hdmap1fval 39810 hdmapfval 39841 rabren3dioph 40637 2nn0ind 40767 zindbi 40768 onfrALTlem5 42162 onfrALTlem5VD 42505 reupr 44974 |
Copyright terms: Public domain | W3C validator |